ترغب بنشر مسار تعليمي؟ اضغط هنا

The 69 micron forsterite band in spectra of protoplanetary disks - Results from the Herschel DIGIT programme

161   0   0.0 ( 0 )
 نشر من قبل Bernhard Sturm
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Context: We have analysed Herschel-PACS spectra of 32 circumstellar disks around Herbig Ae/Be and T-Tauri stars obtained within the Herschel key programme DIGIT. In this paper we focus on the 69mu emission band of the crystalline silicate forsterite. Aims: This work provides an overview of the 69mu forsterite bands in the DIGIT sample. We aim to derive the temperature and composition of the forsterite grains. With this information, constraints can be placed on the spatial distribution of the forsterite in the disk and its formation history. Methods: Position and shape of the 69mu band are used to derive the temperature and composition of the dust by comparison to laboratory spectra of that band. We combine our data with existing Spitzer IRS spectra to compare the presence and strength of the 69mu band to the forsterite bands at shorter wavelengths. Results: A total of 32 sources have been observed, 8 of them show a 69mu emission band that can be attributed to forsterite. With the exception of the T-Tauri star AS205, all of the detections are for disks associated with Herbig Ae/Be stars. Most of the forsterite grains that give rise to the 69mu bands are warm (~100-200 K) and iron-poor (less than ~2% iron). Only AB-Aur requires approximately 3-4% of iron. Conclusions: Our findings support the hypothesis that the forsterite grains form through an equilibrium condensation process at high temperatures. The connection between the strength of the 69 and 33mu bands shows that at least part of the emission in these bands originates from the same dust grains. Further, any model that explains the PACS and the Spitzer IRS observations must take the effects of a wavelength dependent optical depth into account. We find indications of a correlation of the detection rate of the 69mu band with the spectral type of the host stars. However, our sample is too small to obtain a definitive result.



قيم البحث

اقرأ أيضاً

In this article we present the detection of the 69 {mu}m band of the crystalline olivine forsterite within the MESS key program of Herschel. We determine the temperature of the forsterite grains by fitting the 69 {mu}m band.
[abridged] We present far-infrared spectroscopic observations of PMS stars taken with Herschel/PACS as part of the DIGIT key project. The sample includes 22 Herbig AeBe and 8 T Tauri sources. Multiple atomic fine structure and molecular lines are det ected at the source position: [OI], [CII], CO, OH, H_2O, CH^+. The most common feature is the [OI] 63micron line detected in almost all of the sources followed by OH. In contrast with CO, OH is detected toward both Herbig AeBe groups (flared and non-flared sources). An isothermal LTE slab model fit to the OH lines indicates column densities of 10^13 < N_OH < 10^16 cm^-2, emitting radii 15 < r < 100 AU and excitation temperatures 100 < T_ex < 400 K. The OH emission thus comes from a warm layer in the disk at intermediate stellar distances. Warm H_2O emission is detected through multiple lines toward the T Tauri systems AS 205, DG Tau, S CrA and RNO 90 and three Herbig AeBe systems HD 104237, HD 142527, HD 163296 (through line stacking). Overall, Herbig AeBe sources have higher OH/H_2O abundance ratios across the disk than do T Tauri disks, from near- to far-infrared wavelengths. Far-infrared CH^+ emission is detected toward HD 100546 and HD 97048. The slab model suggests moderate excitation (T_ex ~ 100 K) and compact (r ~ 60 AU) emission in the case of HD 100546. The [CII] emission is spatially extended in all sources where the line is detected. This suggests that not all [CII] emission is associated with the disk and that there is a substantial contribution from diffuse material around the young stars. The flux ratios of the atomic fine structure lines are consistent with a disk origin for the oxygen lines for most of the sources.
92 - Sierra L. Grant 2018
We analyze Herschel Space Observatory observations of 104 young stellar objects with protoplanetary disks in the ~1.5 Myr star-forming region Lynds 1641 (L1641) within the Orion A Molecular Cloud. We present spectral energy distributions from the opt ical to the far-infrared including new photometry from the Herschel Photodetector Array Camera and Spectrometer (PACS) at 70 microns. Our sample, taken as part of the Herschel Orion Protostar Survey, contains 24 transitional disks, eight of which we identify for the first time in this work. We analyze the full disks with irradiated accretion disk models to infer dust settling properties. Using forward modeling to reproduce the observed nKS-[70] index for the full disk sample, we find the observed disk indices are consistent with models that have depletion of dust in the upper layers of the disk relative to the mid plane, indicating significant dust settling. We perform the same analysis on full disks in Taurus with Herschel data and find that Taurus is slightly more evolved, although both samples show signs of dust settling. These results add to the growing literature that significant dust evolution can occur in disks by ~1.5 Myr.
Herschel/HIFI spectroscopic observations of CO J=10-9, CO J=16-15 and [CII] towards HD 100546 are presented. The objective is to resolve the velocity profile of the lines to address the emitting region of the transitions and directly probe the distri bution of warm gas in the disk. The spectra reveal double-peaked CO line profiles centered on the systemic velocity, consistent with a disk origin. The J=16-15 line profile is broader than that of the J=10-9 line, which in turn is broader than those of lower J transitions (6-5, 3-2, observed with APEX), thus showing a clear temperature gradient of the gas with radius. A power-law flat disk model is used to fit the CO line profiles and the CO rotational ladder simultaneously, yielding a temperature of T_0=1100 pm 350 K (at r_0 = 13 AU) and an index of q=0.85 pm 0.1 for the temperature radial gradient. This indicates that the gas has a steeper radial temperature gradient than the dust (mean q_{dust} ~ 0.5), providing further proof of the thermal decoupling of gas and dust at the disk heights where the CO lines form. The [CII] line profile shows a strong single-peaked profile red-shifted by 0.5 km s-1 compared to the systemic velocity. We conclude that the bulk of the [CII] emission has a non-disk origin (e.g., remnant envelope or diffuse cloud).
We present 48 Herschel/PACS spectra of evolved stars in the wavelength range of 67-72 $mu$m. This wavelength range covers the 69 $mu$m band of crystalline olivine ($text{Mg}_{2-2x}text{Fe}_{(2x)}text{SiO}_{4}$). The width and wavelength position of t his band are sensitive to the temperature and composition of the crystalline olivine. Our sample covers a wide range of objects: from high mass-loss rate AGB stars (OH/IR stars, $dot M ge 10^{-5}$ M$_odot$/yr), through post-AGB stars with and without circumbinary disks, to planetary nebulae and even a few massive evolved stars. The goal of this study is to exploit the spectral properties of the 69 $mu$m band to determine the composition and temperature of the crystalline olivine. Since the objects cover a range of evolutionary phases, we study the physical and chemical properties in this range of physical environments. We fit the 69 $mu$m band and use its width and position to probe the composition and temperature of the crystalline olivine. For 27 sources in the sample, we detected the 69 $mu$m band of crystalline olivine ($text{Mg}_{(2-2x)}text{Fe}_{(2x)}text{SiO}_{4}$). The 69 $mu$m band shows that all the sources produce pure forsterite grains containing no iron in their lattice structure. The temperature of the crystalline olivine as indicated by the 69 $mu$m band, shows that on average the temperature of the crystalline olivine is highest in the group of OH/IR stars and the post-AGB stars with confirmed Keplerian disks. The temperature is lower for the other post-AGB stars and lowest for the planetary nebulae. A couple of the detected 69 $mu$m bands are broader than those of pure magnesium-rich crystalline olivine, which we show can be due to a temperature gradient in the circumstellar environment of these stars. continued...
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا