ﻻ يوجد ملخص باللغة العربية
A new EAS hybrid experiment has been designed by constructing a YAC (Yangbajing Air shower Core) detector array inside the existing Tibet-III air shower array. The first step of YAC, called YAC-I, consists of 16 plastic scintillator units (4 rows times 4 columns) each with an area of 40 cm * 50 cm which is used to check hadronic interaction models used in AS simulations. A Monte Carlo study shows that YAC-I can record high energy electromagnetic component in the core region of air showers induced by primary particles of several tens TeV energies where the primary composition is directly measured by space experiments. It may provide a direct check of the hadronic interaction models currently used in the air shower simulations in the corresponding energy region. In present paper, the method of the observation and the sensitivity of the characteristics of the observed events to the different interaction models are discussed.
A new hybrid experiment has been started by AS{gamma} experiment at Tibet, China, since August 2011, which consists of a low threshold burst-detector-grid (YAC-II, Yangbajing Air shower Core array), the Tibet air-shower array (Tibet-III) and a large
A Monte Carlo study for single baryon reconstruction method is presented based on two-body baryonic decays of charmonium, $jJ/psi$, $psi(3686)rightarrowXibarXi$ at BESIII experiment. As a result, we find that the detection efficiency for single baryo
Aiming at the observation of cosmic-ray chemical composition at the knee energy region, we have been developinga new type air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522$^circ$ E, 30.102$^c
The hybrid Tibet AS array was successfully constructed in 2014. It has 4500 m$^{2}$ underground water Cherenkov pools used as the muon detector (MD) and 789 scintillator detectors covering 36900 m$^{2}$ as the surface array. At 100 TeV, cosmic-ray ba
We investigate reversibility violations in the Hybrid Monte Carlo algorithm. Those violations are inevitable when computers with finite numerical precision are being used. In SU(2) gauge theory, we study the dependence of observables on the size of t