ﻻ يوجد ملخص باللغة العربية
Convection, pulsation and magnetic fields have all been suggested as mechanisms for the transport of mass and energy from the optical photosphere of red supergiants, out to the region where the stellar wind is launched. We imaged the red supergiant Betelgeuse at 0.06-0.18 arcsec resolution, using e-MERLIN at 5.5--6.0 GHz, with a sensitivity of ~0.01 mJy/beam. Most of the radio emission comes from within an ellipse (0.235x0.218) arcsec^2 (~5x the optical radius), with a flux density of 1.62 mJy, giving an average brightness temperature ~1250 K. This radio photosphere contains two hotspots of 0.53 and 0.79 mJy/beam, separated by 90 milli-arcsec, with brightness temperatures 5400+/-600 K and 3800+/-500 K. Similar hotspots, at more than double the distance from the photosphere of those seen in any other regime, were detected by the less-sensitive `old MERLIN in 1992, 1995 and 1996 and many exceed the photospheric temperature of 3600 K. Such brightness temperatures are high enough to emanate from pockets of chromospheric plasma. Other possibilities include local shock heating, the convective dredge-up of hot material or exceptionally cool, low density regions, transparent down to the hottest layer at ~40 milliarcsec radius. We also detect an arc 0.2--0.3 arcsec to the SW, brightness temperature ~150 K, in a similar direction to extensions seen on both smaller and larger scales in the infra-red and in CO at mm wavelengths. These preliminary results will be followed by further e-MERLIN, VLA and ALMA observations to help resolve the problem of mass elevation from 1 to 10 R* in red supergiants.
The role of massive stars is central to an understanding of galactic ecology. It is important to establish the details of how massive stars provide radiative, chemical, and mechanical feedback in galaxies. Central to these issues is an understanding
We present measurements of the linear diameter of the emission region of the Vela pulsar at observing wavelength lambda=18 cm. We infer the diameter as a function of pulse phase from the distribution of visibility on the Mopra-Tidbinbilla baseline. A
We present 5 GHz e-MERLIN observations of the GOODS-N region at sub-arcsec resolution (0.2--0.5 arcsec). These data form part of the early commissioning observations for the e-MERLIN interferometer and a pilot for the e-MERLIN legacy program eMERGE.
Written in Python and utilising ParselTongue to interface with the Astronomical Image Processing System (AIPS), the e-MERLIN data reduction pipeline is intended to automate the procedures required in processing and calibrating radio astronomy data fr
We present very high spatial resolution deep radio continuum observations at 5 GHz (6 cm) made with e-MERLIN of the young stars DG Tau A and B. Assuming it is launched very close (~=1 au) from the star, our results suggest that the DG Tau A outflow i