ترغب بنشر مسار تعليمي؟ اضغط هنا

e-MERLIN resolves Betelgeuse at wavelength 5 cm

127   0   0.0 ( 0 )
 نشر من قبل Anita Richards
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. M. S. Richards




اسأل ChatGPT حول البحث

Convection, pulsation and magnetic fields have all been suggested as mechanisms for the transport of mass and energy from the optical photosphere of red supergiants, out to the region where the stellar wind is launched. We imaged the red supergiant Betelgeuse at 0.06-0.18 arcsec resolution, using e-MERLIN at 5.5--6.0 GHz, with a sensitivity of ~0.01 mJy/beam. Most of the radio emission comes from within an ellipse (0.235x0.218) arcsec^2 (~5x the optical radius), with a flux density of 1.62 mJy, giving an average brightness temperature ~1250 K. This radio photosphere contains two hotspots of 0.53 and 0.79 mJy/beam, separated by 90 milli-arcsec, with brightness temperatures 5400+/-600 K and 3800+/-500 K. Similar hotspots, at more than double the distance from the photosphere of those seen in any other regime, were detected by the less-sensitive `old MERLIN in 1992, 1995 and 1996 and many exceed the photospheric temperature of 3600 K. Such brightness temperatures are high enough to emanate from pockets of chromospheric plasma. Other possibilities include local shock heating, the convective dredge-up of hot material or exceptionally cool, low density regions, transparent down to the hottest layer at ~40 milliarcsec radius. We also detect an arc 0.2--0.3 arcsec to the SW, brightness temperature ~150 K, in a similar direction to extensions seen on both smaller and larger scales in the infra-red and in CO at mm wavelengths. These preliminary results will be followed by further e-MERLIN, VLA and ALMA observations to help resolve the problem of mass elevation from 1 to 10 R* in red supergiants.

قيم البحث

اقرأ أيضاً

The role of massive stars is central to an understanding of galactic ecology. It is important to establish the details of how massive stars provide radiative, chemical, and mechanical feedback in galaxies. Central to these issues is an understanding of the evolution of massive stars, and the critical role of mass loss via strongly structured winds and stellar binarity. Ultimately, massive stellar clusters shape the structure and energetics of galaxies. We aim to conduct high-resolution, deep field mapping at 21cm of the core of the massive Cygnus OB2 association and to characterise the properties of the massive stars and colliding winds at this waveband. We used seven stations of the e-MERLIN radio facility, with its upgraded bandwidth and enhanced sensitivity to conduct a 21cm census of Cygnus OB2. Based on 42 hours of observations, seven overlapping pointings were employed over multiple epochs during 2014 resulting in 1 sigma sensitivities down to ~21microJy and a resolution of ~180mas. A total of 61 sources are detected at 21cm over a ~0.48deg x 0.48deg region centred on the heart of the Cyg OB2 association. Of these 61 sources, 33 are detected for the first time. We detect a number of previously identified sources including four massive stellar binary systems, two YSOs, and several known X-ray and radio sources. We also detect the LBV candidate (possible binary system) and blue hypergiant (BHG) star of Cyg OB2 #12. The 21cm observations secured in the COBRaS Legacy project provide data to constrain conditions in the outer wind regions of massive stars; determine the non-thermal properties of massive interacting binaries; examine evidence for transient sources, including those associated with young stellar objects; and provide unidentified sources that merit follow-up observations. The 21cm data are of lasting value and will serve in combination with other key surveys of Cyg OB2.
We present measurements of the linear diameter of the emission region of the Vela pulsar at observing wavelength lambda=18 cm. We infer the diameter as a function of pulse phase from the distribution of visibility on the Mopra-Tidbinbilla baseline. A s we demonstrate, in the presence of strong scintillation, finite size of the emission region produces a characteristic W-shaped signature in the projection of the visibility distribution onto the real axis. This modification involves heightened probability density near the mean amplitude, decreased probability to either side, and a return to the zero-size distribution beyond. We observe this signature with high statistical significance, as compared with the best-fitting zero-size model, in many regions of pulse phase. We find that the equivalent full width at half maximum of the pulsars emission region decreases from more than 400 km early in the pulse to near zero at the peak of the pulse, and then increases again to approximately 800 km near the trailing edge. We discuss possible systematic effects, and compare our work with previous results.
We present 5 GHz e-MERLIN observations of the GOODS-N region at sub-arcsec resolution (0.2--0.5 arcsec). These data form part of the early commissioning observations for the e-MERLIN interferometer and a pilot for the e-MERLIN legacy program eMERGE. A total of 17 sources were detected with S/N>3. These observations provide unique information on the radio source morphology at sub-arcsec scales. For twelve of these sources, deeper 1.4 GHz MERLIN+VLA observations at the same spatial resolution are available, allowing radio spectral indices to be derived for ten sources on sub-arcsec angular scales. Via analysis of the spectral indices and radio morphologies, these sources have been identified as AGN cores in moderate-to-high redshift (1<z<4) galaxies. These results have provided AGN (or AGN candidate) classification for six previously unclassified sources and confirmed the AGN nature of the rest of the sample. Ultimately the eMERGE project will image the GOODS-N region at 1.4 and 5 GHz with higher resolution (about 50 mas at 5 GHz) and down to sub-microJy sensitivities. The unique combination of sensitivity and spatial resolution will be exploited to study star formation and AGN activity in distant galaxies.
153 - Megan Argo 2015
Written in Python and utilising ParselTongue to interface with the Astronomical Image Processing System (AIPS), the e-MERLIN data reduction pipeline is intended to automate the procedures required in processing and calibrating radio astronomy data fr om the e-MERLIN correlator. Driven by a plain text file of input parameters, the pipeline is modular and can be run in stages by the user, depending on requirements. The software includes options to load raw data, average in time and/or frequency, flag known sources of interference, flag more comprehensively with SERPent, carry out some or all of the calibration procedures including self-calibration), and image in either normal or wide-field mode. It also optionally produces a number of useful diagnostic plots at various stages so that the quality of the data can be assessed. The software is available for download from the e-MERLIN website or via Github.
We present very high spatial resolution deep radio continuum observations at 5 GHz (6 cm) made with e-MERLIN of the young stars DG Tau A and B. Assuming it is launched very close (~=1 au) from the star, our results suggest that the DG Tau A outflow i nitially starts as a poorly focused wind and undergoes significant collimation further along the jet (~=50 au). We derive jet parameters for DG Tau A and find an initial jet opening angle of 86 degrees within 2 au of the source, a mass-loss rate of 1.5x10^-8 solar masses/yr for the ionised component of the jet, and the total ejection/accretion ratio to range from 0.06-0.3. These results are in line with predictions from MHD jet-launching theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا