ترغب بنشر مسار تعليمي؟ اضغط هنا

The PRIsm MUlti-object Survey (PRIMUS). II. Data Reduction and Redshift Fitting

180   0   0.0 ( 0 )
 نشر من قبل Richard Cool
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The PRIsm MUti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z~1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of ~2,500 objects over 0.18 square degrees. The final PRIMUS catalog includes ~130,000 robust redshifts over 9.1 sq. deg. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al 2010. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of sigma_z/(1+z)=0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between AGNs and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.



قيم البحث

اقرأ أيضاً

We describe the design and data sample from the DEEP2 Galaxy Redshift Survey, the densest and largest precision-redshift survey of galaxies at z ~ 1 completed to date. The survey has conducted a comprehensive census of massive galaxies, their propert ies, environments, and large-scale structure down to absolute magnitude M_B = -20 at z ~ 1 via ~90 nights of observation on the DEIMOS spectrograph at Keck Observatory. DEEP2 covers an area of 2.8 deg^2 divided into four separate fields, observed to a limiting apparent magnitude of R_AB=24.1. Objects with z < 0.7 are rejected based on BRI photometry in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately sixty percent of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets which fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45. The DEIMOS 1200-line/mm grating used for the survey delivers high spectral resolution (R~6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. DEEP2 surpasses other deep precision-redshift surveys at z ~ 1 in terms of galaxy numbers, redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the publicly-available DEEP2 DEIMOS data reduction pipelines. [Abridged]
We present a description of the Australian Dark Energy Survey (OzDES) and summarise the results from its six years of operations. Using the 2dF fibre positioner and AAOmega spectrograph on the 3.9-metre Anglo-Australian Telescope, OzDES has monitored 771 AGN, classified hundreds of supernovae, and obtained redshifts for thousands of galaxies that hosted a transient within the 10 deep fields of the Dark Energy Survey. We also present the second OzDES data release, containing the redshifts of almost 30,000 sources, some as faint as $r_{mathrm AB}=24$ mag, and 375,000 individual spectra. These data, in combination with the time-series photometry from the Dark Energy Survey, will be used to measure the expansion history of the Universe out to $zsim1.2$ and the masses of hundreds of black holes out to $zsim4$. OzDES is a template for future surveys that combine simultaneous monitoring of targets with wide-field imaging cameras and wide-field multi-object spectrographs.
HectoMAP is a dense, red-selected redshift survey to a limiting $r = 21.3$ covering 55 square degrees in a contiguous 1.5$^circ$ strip across the northern sky. This region is also covered by the Subaru/Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) photometric survey enabling a range of applications that combine a dense foreground redshift survey with both strong and weak lensing maps. The median redshift of HectoMAP exceeds 0.3 throughout the survey region and the mean density of the redshift survey is $sim 2000$ galaxies deg$^{-2}$. Here we report a total of 17,313 redshifts in a first data release covering 8.7 square degrees. We include the derived quantities D$_{n}4000$ and stellar mass for nearly all of the objects. Among these galaxies, 8117 constitute a 79% complete red-selected subsample with $r leq 20.5$ and an additional 4318 constitute a 68% complete red-selected subsample with $20.5 < r < 21.3$. As examples of the strengths of HectoMAP data we discuss two applications: refined membership of redMaPPer photometrically selected clusters and a test of HSC photometric redshifts. We highlight a remarkable redMaPPer strong lensing system. The comparison of photometric redshifts with spectroscopic redshifts in a dense survey uncovers subtle systematic issues in the photometric redshifts.
128 - E. L. Chapin , A. Pope , D. Scott 2009
We present results from a multi-wavelength study of 29 sources (false detection probabilities <5%) from a survey of the Great Observatories Origins Deep Survey-North field at 1.1mm using the AzTEC camera. Comparing with existing 850um SCUBA studies i n the field, we examine differences in the source populations selected at the two wavelengths. The AzTEC observations uniformly cover the entire survey field to a 1-sigma depth of ~1mJy. Searching deep 1.4GHz VLA, and Spitzer 3--24um catalogues, we identify robust counterparts for 21 1.1mm sources, and tentative associations for the remaining objects. The redshift distribution of AzTEC sources is inferred from available spectroscopic and photometric redshifts. We find a median redshift of z=2.7, somewhat higher than z=2.0 for 850um-selected sources in the same field, and our lowest redshift identification lies at a spectroscopic redshift z=1.1460. We measure the 850um to 1.1mm colour of our sources and do not find evidence for `850um dropouts, which can be explained by the low-SNR of the observations. We also combine these observed colours with spectroscopic redshifts to derive the range of dust temperatures T, and dust emissivity indices $beta$ for the sample, concluding that existing estimates T~30K and $beta$~1.75 are consistent with these new data.
The primordial power spectrum describes the initial perturbations that seeded the large-scale structure we observe today. It provides an indirect probe of inflation or other structure-formation mechanisms. In this letter, we recover the primordial po wer spectrum from the Planck PR1 dataset, using our recently published algorithm PRISM. PRISM is a sparsity-based inversion method, that aims at recovering features in the primordial power spectrum from the empirical power spectrum of the cosmic microwave background (CMB). This ill-posed inverse problem is regularised using a sparsity prior on features in the primordial power spectrum in a wavelet dictionary. Although this non-parametric method does not assume a strong prior on the shape of the primordial power spectrum, it is able to recover both its general shape and localised features. As a results, this approach presents a reliable way of detecting deviations from the currently favoured scale-invariant spectrum. We applied PRISM to 100 simulated Planck data to investigate its performance on Planck-like data. We also tested the algorithms ability to recover a small localised feature at $k sim 0.125$ Mpc$^{-1}$, which caused a large dip at $ell sim 1800$ in the angular power spectrum. We then applied PRISM to the Planck PR1 power spectrum to recover the primordial power spectrum. We find no significant departures from the fiducial Planck PR1 near scale-invariant primordial power spectrum with $A_s=2.215times10^{-9}$ and $n_s = 0.9624$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا