ترغب بنشر مسار تعليمي؟ اضغط هنا

The VVV-SkZ pipeline: an automatic PSF-fitting photometric pipeline for the VVV survey

92   0   0.0 ( 0 )
 نشر من قبل Francesco Mauro
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the VVV-SkZ_pipeline, a DAOPHOT-based photometric pipeline, created to perform PSF-fitting photometry of VISTA Variables in the Via Lactea (VVV) ESO Public Survey data. The pipeline replaces the user avoiding repetitive interaction in all the operations, retaining all of the benefits of the power and accuracy of the DAOPHOT suite. The pipeline provides an astrometrized photometric catalog reliable up to more than 2 magnitudes brighter than the saturation limit, where other techniques fail. It also produces deeper and more accurate photometry. These achievements allow the VVV-SkZ_pipeline to produce data well anchored to the selected standard photometric system and analyze important phenomena (i.e. TRGB, RGB slope, HB morphology, RR Lyrae), that other methods are not able to manage.



قيم البحث

اقرأ أيضاً

The Vista Variables in the Via Lactea (VVV) survey has performed a multi-epoch near-infrared imaging of the inner Galactic plane. High-fidelity photometric catalogs are needed to utilize the data. We aim at producing a deep, point-spread-function (PS F) photometric catalog for the VVV survey J, H, and Ks band data. Specifically, we aim at taking advantage of all the epochs of the survey to reach high limiting magnitudes. We develop an automatic PSF-fitting pipeline based on the DaoPHOT algorithm and perform photometry on the stacked VVV images in J, H, and Ks bands. We present a PSF photometric catalog in the Vega system that contains about 926 million sources in the J, H, and Ks filters. About 10% of the sources are flagged as possible spurious detections. The 5 sigma limiting magnitudes of the sources with high reliability are about 20.8, 19.5, and 18.7 mag in the J, H, and Ks band, respectively, depending on the local crowding condition. Our photometric catalog reaches on average about one magnitude deeper than the previously released PSF DoPHOT photometric catalog. It also includes less spurious detections. There are significant differences in the brightnesses of faint sources between our catalog and the previously released one. The likely origin of these differences is in the different photometric algorithms that are utilized; it is not straightforward to assess which catalog is more accurate in which situations. Our new catalog is beneficial especially for science goals that require high limiting magnitudes; our catalog reaches such in fields that have a relatively uniform source number density. Overall, the limiting magnitudes and completeness are different in the fields with different crowding conditions.
130 - M. Libralato 2015
We present a new reduction pipeline for the VIRCAM@VISTA detector and describe the method developed to obtain high-precision astrometry with the VISTA Variables in the Via Lactea (VVV) data set. We derive an accurate geometric-distortion correction u sing as calibration field the globular cluster NGC 5139, and showed that we are able to reach a relative astrometric precision of about 8 mas per coordinate per exposure for well-measured stars over a field of view of more than 1 square degree. This geometric-distortion correction is made available to the community. As a test bed, we chose a field centered around the globular cluster NGC 6656 from the VVV archive and computed proper motions for the stars within. With 45 epochs spread over four years, we show that we are able to achieve a precision of 1.4 mas/yr and to isolate each population observed in the field (cluster, Bulge and Disk) using proper motions. We used proper-motion-selected field stars to measure the motion difference between Galactic disk and bulge stars. Our proper-motion measurements are consistent with UCAC4 and PPMXL, though our errors are much smaller. Models have still difficulties in reproducing the observations in this highly-reddened Galactic regions.
We report the discovery of VVV-WIT-04, a near-infrared variable source towards the Galactic disk located ~0.2 arcsec apart from the position of the radio source PMN J1515-5559. The object was found serendipitously in the near-IR data of the ESO publi c survey VISTA Variables in the Via Lactea (VVV). Our analysis is based on variability, multicolor, and proper motion data from VVV and VVV eXtended surveys, complemented with archive data at longer wavelengths. We suggest that VVV-WIT-04 has an extragalactic origin as the near-IR counterpart of PMN J1515-5559. The Ks-band light-curve of VVV-WIT-04 is highly variable and consistent with that of an Optically Violent Variable (OVV) quasar. The variability in the near-IR can be interpreted as the redshifted optical variability. Residuals to the proper motion varies with the magnitude suggesting contamination by a blended source. Alternative scenarios, including a transient event such as a nova or supernova, or even a binary microlensing event are not in agreement with the available data.
We show the preliminary analysis of some Galactic stellar clusters (GSCls) candidates and the results of the analysis of two new interesting GSCls found in the VISTA Variables in the Via Lactea (VVV) Survey. The VVV photometric data are being used al so to improve the knowledge of the Galactic structure. The photometric data are obtained with the new automatic photometric pipeline VVV-SkZ_pipeline.
The Vista Variables in the Via Lactea (VVV) ESO Public Survey consists in a near-infrared time-series survey of the Galactic bulge and inner disk, covering 562 square degrees of the sky, over a total timespan of more than 5 years. In this paper, we p rovide an updated account of the current status of the survey, especially in the context of stellar variability studies. In this sense, we give a first description of our efforts towards the construction of the VVV Variable Star Catalog (VVV-VSC).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا