ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Inefficiency of Standard Multi-Unit Auctions

155   0   0.0 ( 0 )
 نشر من قبل Orestis Telelis
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study two standard multi-unit auction formats for allocating multiple units of a single good to multi-demand bidders. The first one is the Discriminatory Auction, which charges every winner his winning bids. The second is the Uniform Price Auction, which determines a uniform price to be paid per unit. Variants of both formats find applications ranging from the allocation of state bonds to investors, to online sales over the internet, facilitated by popular online brokers. For these formats, we consider two bidding interfaces: (i) standard bidding, which is most prevalent in the scientific literature, and (ii) uniform bidding, which is more popular in practice. In this work, we evaluate the economic inefficiency of both multi-unit auction formats for both bidding interfaces, by means of upper and lower bounds on the Price of Anarchy for pure Nash equilibria and mixed Bayes-Nash equilibria. Our developments improve significantly upon bounds that have been obtained recently in [Markakis, Telelis, ToCS 2014] and [Syrgkanis, Tardos, STOC 2013] for submodular valuation functions. Moreover, we consider for the first time bidders with subadditive valuation functions for these auction formats. Our results signify that these auctions are nearly efficient, which provides further justification for their use in practice.



قيم البحث

اقرأ أيضاً

We study auctions for carbon licenses, a policy tool used to control the social cost of pollution. Each identical license grants the right to produce a unit of pollution. Each buyer (i.e., firm that pollutes during the manufacturing process) enjoys a decreasing marginal value for licenses, but society suffers an increasing marginal cost for each license distributed. The seller (i.e., the government) can choose a number of licenses to put up for auction, and wishes to maximize the societal welfare: the total economic value of the buyers minus the social cost. Motivated by emission license markets deployed in practice, we focus on uniform price auctions with a price floor and/or price ceiling. The seller has distributional information about the market, and their goal is to tune the auction parameters to maximize expected welfare. The target benchmark is the maximum expected welfare achievable by any such auction under truth-telling behavior. Unfortunately, the uniform price auction is not truthful, and strategic behavior can significantly reduce (even below zero) the welfare of a given auction configuration. We describe a subclass of safe-price auctions for which the welfare at any Bayes-Nash equilibrium will approximate the welfare under truth-telling behavior. We then show that the better of a safe-price auction, or a truthful auction that allocates licenses to only a single buyer, will approximate the target benchmark. In particular, we show how to choose a number of licenses and a price floor so that the worst-case welfare, at any equilibrium, is a constant approximation to the best achievable welfare under truth-telling after excluding the welfare contribution of a single buyer.
We study the problem of finding personalized reserve prices for unit-demand buyers in multi-unit eager VCG auctions with correlated buyers. The input to this problem is a dataset of submitted bids of $n$ buyers in a set of auctions. The goal is to fi nd a vector of reserve prices, one for each buyer, that maximizes the total revenue across all auctions. Roughgarden and Wang (2016) showed that this problem is APX-hard but admits a greedy $frac{1}{2}$-approximation algorithm. Later, Derakhshan, Golrezai, and Paes Leme (2019) gave an LP-based algorithm achieving a $0.68$-approximation for the (important) special case of the problem with a single-item, thereby beating greedy. We show in this paper that the algorithm of Derakhshan et al. in fact does not beat greedy for the general multi-item problem. This raises the question of whether or not the general problem admits a better-than-$frac{1}{2}$ approximation. In this paper, we answer this question in the affirmative and provide a polynomial-time algorithm with a significantly better approximation-factor of $0.63$. Our solution is based on a novel linear programming formulation, for which we propose two different rounding schemes. We prove that the best of these two and the no-reserve case (all-zero vector) is a $0.63$-approximation.
We characterise the set of dominant strategy incentive compatible (DSIC), strongly budget balanced (SBB), and ex-post individually rational (IR) mechanisms for the multi-unit bilateral trade setting. In such a setting there is a single buyer and a si ngle seller who holds a finite number k of identical items. The mechanism has to decide how many units of the item are transferred from the seller to the buyer and how much money is transferred from the buyer to the seller. We consider two classes of valuation functions for the buyer and seller: Valuations that are increasing in the number of units in possession, and the more specific class of valuations that are increasing and submodular. Furthermore, we present some approximation results about the performance of certain such mechanisms, in terms of social welfare: For increasing submodular valuation functions, we show the existence of a deterministic 2-approximation mechanism and a randomised e/(1-e) approximation mechanism, matching the best known bounds for the single-item setting.
We study the power and limitations of posted prices in multi-unit markets, where agents arrive sequentially in an arbitrary order. We prove upper and lower bounds on the largest fraction of the optimal social welfare that can be guaranteed with poste d prices, under a range of assumptions about the designers information and agents valuations. Our results provide insights about the relative power of uniform and non-uniform prices, the relative difficulty of different valuation classes, and the implications of different informational assumptions. Among other results, we prove constant-factor guarantees for agents with (symmetric) subadditive valuations, even in an incomplete-information setting and with uniform prices.
Second-price auctions with deposits are frequently used in blockchain environments. An auction takes place on-chain: bidders deposit an amount that fully covers their bid (but possibly exceeds it) in a smart contract. The deposit is used as insurance against bidders not honoring their bid if they win. The deposit, but not the bid, is publicly observed during the bidding phase of the auction. The visibility of deposits can fundamentally change the strategic structure of the auction if bidding happens sequentially: Bidding is costly since deposit are costly to make. Thus, deposits can be used as a costly signal for a high valuation. This is the source of multiple inefficiencies: To engage in costly signalling, a bidder who bids first and has a high valuation will generally over-deposit in equilibrium, i.e.~deposit more than he will bid. If high valuations are likely there can, moreover, be entry deterrence through high deposits: a bidder who bids first can deter subsequent bidders from entering the auction. Pooling can happen in equilibrium, where bidders of different valuations deposit the same amount. The auction fails to allocate the item to the bidder with the highest valuation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا