ترغب بنشر مسار تعليمي؟ اضغط هنا

The Stellar Masses of Disk Galaxies and the Calibration of Color-Mass to Light Ratio Relations

387   0   0.0 ( 0 )
 نشر من قبل Stacy McGaugh
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new Spitzer 3.6 micron observations of a sample of disk galaxies spanning over 10 magnitudes in luminosity and ranging in gas fraction from ~10% to over 90%. We use these data to test population synthesis prescriptions for computing stellar mass. Many commonly employed models fail to provide self-consistent stellar masses in the sense that the stellar mass estimated from the optical luminosity typically exceeds that estimated from the near-infrared (NIR) luminosity. This problem is present in models both with and without TP-AGB stars, but is more severe in the former. Self-consistency can be achieved if NIR mass-to-light ratios are approximately constant with a mean value near 0.5 Msun/Lsun at 3.6 microns. We use the Baryonic Tully-Fisher relation calibrated by gas rich galaxies to provide an independent estimate of the color-mass to light ratio relation. This approach also suggests that the typical 3.6 micron mass-to-light ratio is 0.5 (0.65 in the K band) for rotationally supported galaxies. These values are consistent with a Kroupa IMF.


قيم البحث

اقرأ أيضاً

We combine Spitzer $3.6mu$ observations of a sample of disk galaxies spanning over 10 magnitudes in luminosity with optical luminosities and colors to test population synthesis prescriptions for computing stellar mass. Many commonly employed models f ail to provide self-consistent results: the stellar mass estimated from the luminosity in one band can differ grossly from that of another band for the same galaxy. Independent models agree closely in the optical ($V$-band), but diverge at longer wavelengths. This effect is particularly pronounced in recent models with substantial contributions from TP-AGB stars. We provide revised color--mass-to-light ratio relations that yield self-consistent stellar masses when applied to real galaxies. The $B-V$ color is a good indicator of the mass-to-light ratio. Some additional information is provided by $V-I$, but neither it nor $J-K_s$ are particularly useful for constraining the mass-to-light ratio on their own. In the near-infrared, the mass-to-light ratio depends weakly on color, with typical values of $0.6; mathrm{M}_{odot}/mathrm{L}_{odot}$ in the $K_s$-band and $0.47; mathrm{M}_{odot}/mathrm{L}_{odot}$ at $3.6mu$.
We analyze the stellar mass-to-light ratio (M/L) gradients in a large sample of local galaxies taken from the Sloan Digital Sky Survey, spanning a wide range of stellar masses and morphological types. As suggested by the well known relationship betwe en M/L ratios and colors, we show that M/L gradients are strongly correlated with colour gradients, which we trace to the effects of age variations. Stellar M/L gradients generally follow patterns of variation with stellar mass and galaxy type that were previous found for colour and metallicty gradients. In late-type galaxies M/L gradients are negative, steepening with increasing mass. In early-type galaxies M/L gradients are shallower while presenting a two-fold trend: they decrease with mass up to a characteristic mass of M* sim 10^10.3 M_sun and increase at larger masses. We compare our findings with other analyses and discuss some implications for galaxy formation and for dark matter estimates.
We derive the stellar-to-halo mass relations, SHMR, of local blue and red central galaxies separately, as well as the fraction of halos hosting blue/red central galaxies. We find that: 1) the SHMR of central galaxies is segregated by color, with blue centrals having a SHMR above the one of red centrals; at logMh~12, the Ms/Mh ratio of the blue centrals is ~0.05, which is ~1.7 times larger than the value of red centrals. 2) The intrinsic scatters of the SHMRs of red and blue centrals are ~0.14 and ~0.11dex, respectively. The intrinsic scatter of the average SHMR of all central galaxies changes from ~0.20dex to ~0.14dex in the 11.3<logMh<15 range. 3) The fraction of halos hosting blue centrals at Mh=1E11Msun is 87%, but at 2x1E12Msun decays to ~20%, approaching to a few per cents at higher masses. The characteristic mass at which this fraction is the same for blue and red galaxies is Mh~7x1E11Msun. Our results suggest that the SHMR of central galaxies at large masses is shaped by halo mass quenching (likely through shock virial heating and AGN feedback), but group richness also plays an important role: central galaxies living in less dense environments quenched their star formation later or did not quench it yet. At low masses, processes that delay star formation without invoking too strong supernova-driven outflows could explain the high Ms/Mh ratios of blue centrals as compared to those of the scarce red centrals.
We have tested the effect of spatial gradients in stellar mass-to-light ratio (Y) on measurements of black hole masses (MBH) derived from stellar orbit superposition models. Such models construct a static gravitational potential for a galaxy and its central black hole, but typically assume spatially uniform Y. We have modeled three giant elliptical galaxies with gradients alpha = d(log Y)/d(log r) from -0.2 to +0.1. Color and line strength gradients suggest mildly negative alpha in these galaxies. Introducing a negative (positive) gradient in Y increases (decreases) the enclosed stellar mass near the center of the galaxy and leads to systematically smaller (larger) MBH measurements. For models with alpha = -0.2, the best-fit values of MBH are 28%, 27%, and 17% lower than the constant-Y case, in NGC 3842, NGC 6086, and NGC 7768, respectively. For alpha = +0.1, MBH are 14%, 22%, and 17% higher than the constant-Y case for the three respective galaxies. For NGC 3842 and NGC 6086, this bias is comparable to the statistical errors from individual modeling trials. At larger radii, negative (positive) gradients in Y cause the total stellar mass to decrease (increase) and the dark matter fraction within one effective radius to increase (decrease).
The dark matter content of early,- type galaxies (ETGs) is a hotly debated topic with contrasting results arguing in favour or against the presence of significant dark mass within the effective radius and the change with luminosity and mass. In order to address this question, we investigate here the global mass - to - light ratio $Upsilon(r) = M(r)/L(r)$ of a sample of 21 lenses observed within the Sloan Lens ACS (SLACS) survey. We follow the usual approach of modeling the galaxy as a two component systems, but we use a phenomenological ansatz for $Upsilon(r)$, proposed by some of us in Tortora et al. (2007), able to smoothly interpolate between constant $M/L$ models and a wide class of dark matter haloes. The resulting galaxy model is then fitted to the data on the Einstein radius and velocity dispersion. Our phenomenological model turns out to be in well agreement with the data suggesting the presence of massive dark matter haloes in order to explain the lensing and dynamics properties of the SLACS lenses. According to the values of the dark matter mass fraction, we argue that the halo may play a significant role in the inner regions probed by the data, but such a conclusion strongly depends on the adopted initial mass function of the stellar population. Finally, we find that the dark matter mass fraction within $R_{eff}$ scales with both the total luminosity and stellar mass in such a way that more luminous (and hence more massive) galaxies have a larger dark matter content.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا