ﻻ يوجد ملخص باللغة العربية
Crystal point group symmetry is shown to protect Majorana fermions (MFs) in spinfull superconductors (SCs). We elucidate the condition necessary to obtain MFs protected by the point group symmetry. We argue that superconductivity in Sr2RuO4 hosts a topological phase transition to a topological crystalline SC, which accompanies a d-vector rotation under a magnetic field along the c-axis. Taking all three bands and spin-orbit interactions into account, symmetry-protected MFs in the topological crystalline SC are identified. Detection of such MFs provides evidence of the d-vector rotation in Sr2RuO4 expected from Knight shift measurements but not yet verified.
I. Introduction (What is new in RMT, Superconducting quasiparticles, Experimental platforms) II. Topological superconductivity (Kitaev chain, Majorana operators, Majorana zero-modes, Phase transition beyond mean-field) III. Fundamental symmetries
We study superconductors with $n$-fold rotational invariance both in the presence and in the absence of spin-orbit interactions. More specifically, we classify the non-interacting Hamiltonians by defining a series of $Z$-numbers for the Bogoliubov-de
We classify discrete-rotation symmetric topological crystalline superconductors (TCS) in two dimensions and provide the criteria for a zero energy Majorana bound state (MBS) to be present at composite defects made from magnetic flux, dislocations, an
Landau levels (LL) have been predicted to emerge in systems with Dirac nodal points under applied non-uniform strain. We consider 2D, $d_{xy}$ singlet (2D-S) and 3D $p pm i p$ equal-spin triplet (3D-T) superconductors (SCs). We demonstrate the spinfu
Motivated by a recent experiment in which zero-bias peaks have been observed in scanning tunneling microscopy (STM) experiments performed on chains of magnetic atoms on a superconductor, we show, by generalizing earlier work, that a multichannel ferr