ﻻ يوجد ملخص باللغة العربية
We analyze the hypothetical link between octahedral straightening and increased conductivity inside the domain walls of BiFeO3. Our calculations for 109 degree walls predict a lattice parameter expansion of c.a. 1 percent in the direction perpendicular to the wall, and an associated straightening of the octahedral rotation angle of 4 degrees, which is comparable to that observed in the high temperature metallic phase of BiFeO3. On the other hand, in the closely related family of rare-earth orthoferrites, straighter octahedra do not correlate with increased bandgap, which suggests that the correlation between octahedral straightening and bandgap reduction in BiFeO3 is perhaps fortuitous and not necessarily the cause of increased conductivity at the walls.
The structure of ABO3 perovskites is dominated by two types of unstable modes, namely, the oxygen octahedral rotation (AFD) and ferroelectric (FE) mode. It is generally believed that such AFD and FE modes tend to compete and suppress each other. Here
We model short-period superlattices of WO$_3$ and ReO$_3$ with first-principles calculations. In fully-relaxed superlattices, we observe that octahedral tilts about an axis in the planes of the superlattices do not propagate from one material, despit
Local conduction at domains and domains walls is investigated in BiFeO3 thin films containing mostly 71o domain walls. Measurements at room temperature reveal conduction through 71o domain walls. Conduction through domains could also be observed at h
Epitaxial strain is a proven route to enhancing the properties of complex oxides, however, the details of how the atomic structure accommodates strain are poorly understood due to the difficulty of measuring the oxygen positions in thin films. We pre
Nanoelectronic devices based on ferroelectric domain walls (DWs), such as memories, transistors, and rectifiers, have been demonstrated in recent years. Practical high-speed electronics, on the other hand, usually demand operation frequencies in the