ﻻ يوجد ملخص باللغة العربية
We prove short-time existence of phi-regular solutions to the planar anisotropic curvature flow, including the crystalline case, with an additional forcing term possibly unbounded and discontinuous in time, such as for instance a white noise. We also prove uniqueness of such solutions when the anisotropy is smooth and elliptic. The main tools are the use of an implicit variational scheme in order to define the evolution, and the approximation with flows corresponding to regular anisotropies.
An existence and uniqueness result, up to fattening, for crystalline mean curvature flows with forcing and arbitrary (convex) mobilities, is proven. This is achieved by introducing a new notion of solution to the corresponding level set formulation.
We consider a variational scheme for the anisotropic (including crystalline) mean curvature flow of sets with strictly positive anisotropic mean curvature. We show that such condition is preserved by the scheme, and we prove the strict convergence in
We consider a class of finite Markov moment problems with arbitrary number of positive and negative branches. We show criteria for the existence and uniqueness of solutions, and we characterize in detail the non-unique solution families. Moreover, we
We consider the evolution of fronts by mean curvature in the presence of obstacles. We construct a weak solution to the flow by means of a variational method, corresponding to an implicit time-discretization scheme. Assuming the regularity of the obs
We derive a weak-strong uniqueness principle for BV solutions to multiphase mean curvature flow of triple line clusters in three dimensions. Our proof is based on the explicit construction of a gradient-flow calibration in the sense of the recent wor