ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Analysis of Current Sheets in Three-Dimensional Magnetohydrodynamic Turbulence

136   0   0.0 ( 0 )
 نشر من قبل Vladimir Zhdankin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a framework for studying the statistical properties of current sheets in numerical simulations of 3D magnetohydrodynamic (MHD) turbulence. We describe an algorithm that identifies current sheets in a simulation snapshot and then determines their geometrical properties (including length, width, and thickness) and intensities (peak current density and total energy dissipation rate). We then apply this procedure to simulations of reduced MHD turbulence and perform a statistical analysis on the obtained population of current sheets. We evaluate the role of reconnection by separately studying the populations of current sheets which contain magnetic X-points and those which do not. We find that the statistical properties of the two populations are different in general. We compare the scaling of these properties to phenomenological predictions obtained for the inertial range of MHD turbulence. Finally, we test whether the reconnecting current sheets are consistent with the Sweet-Parker model.



قيم البحث

اقرأ أيضاً

In an earlier paper (Wan et al. 2012), the authors showed that a similarity solution for anisotropic incompressible 3D magnetohydrodynamic (MHD) turbulence, in the presence of a uniform mean magnetic field $vB_0$, exists if the ratio of parallel to p erpendicular (with respect to $vB_0$) similarity length scales remains constant in time. This conjecture appears to be a rather stringent constraint on the dynamics of decay of the energy-containing eddies in MHD turbulence. However, we show here, using direct numerical simulations, that this hypothesis is indeed satisfied in incompressible MHD turbulence. After an initial transient period, the ratio of parallel to perpendicular length scales fluctuates around a steady value during the decay of the eddies. We show further that a Taylor--Karman-like similarity decay holds for MHD turbulence in the presence of a mean magnetic field. The effect of different parameters, including Reynolds number, DC field strength, and cross-helicity, on the nature of similarity decay is discussed.
The Eulerian space-time correlation of strong Magnetohydrodynamic (MHD) turbulence in strongly magnetized plasmas is investigated by means of direct numerical simulations of Reduced MHD turbulence and phenomenological modeling. Two new important resu lts follow from the simulations: 1) counter-propagating Alfvenic fluctuations at a each scale decorrelate in time at the same rate in both balanced and imbalanced turbulence; and 2) the scaling with wavenumber of the decorrelation rate is consistent with pure hydrodynamic sweeping of small-scale structures by the fluctuating velocity of the energy-containing scales. An explanation of the simulation results is proposed in the context of a recent phenomenological MHD model introduced by Bourouaine and Perez 2019 (BP19) when restricted to the strong turbulence regime. The model predicts that the two-time power spectrum exhibits an universal, self-similar behavior that is solely determined by the probability distribution function of random velocities in the energy-containing range. Understanding the scale-dependent temporal evolution of the space-time turbulence correlation as well as its associated universal properties is essential in the analysis and interpretation of spacecraft observations, such as the recently launched Parker Solar Probe (PSP).
Plasma turbulence is ubiquitous in space and astrophysical plasmas, playing an important role in plasma energization, but the physical mechanisms leading to dissipation of the turbulent energy remain to be definitively identified. Kinetic simulations in two dimensions (2D) have been extensively used to study the dissipation process. How the limitation to 2D affects energy dissipation remains unclear. This work provides a model of comparison between two- and three-dimensional (3D) plasma turbulence using gyrokinetic simulations; it also explores the dynamics of distribution functions during the dissipation process. It is found that both 2D and 3D nonlinear gyrokinetic simulations of a low-beta plasma generate electron velocity-space structures with the same characteristics as that of linear Landau damping of Alfven waves in a 3D linear simulation. The continual occurrence of the velocity-space structures throughout the turbulence simulations suggests that the action of Landau damping may be responsible for the turbulent energy transfer to electrons in both 2D and 3D, and makes possible the subsequent irreversible heating of the plasma through collisional smoothing of the velocity-space fluctuations. Although, in the 2D case where variation along the equilibrium magnetic field is absent, it may be expected that Landau damping is not possible, a common trigonometric factor appears in the 2D resonant denominator, leaving the resonance condition unchanged from the 3D case. The evolution of the 2D and 3D cases is qualitatively similar. However, quantitatively the nonlinear energy cascade and subsequent dissipation is significantly slower in the 2D case.
108 - N. F. Loureiro 2007
Current sheets formed in magnetic reconnection events are found to be unstable to high-wavenumber perturbations. The instability is very fast: its maximum growth rate scales as S^{1/4} v_A/L, where L is the length of the sheet, v_A the Alfven speed a nd S the Lundquist number. As a result, a chain of plasmoids (secondary islands) is formed, whose number scales as S^{3/8}.
The magnetic topology and field line random walk properties of a nanoflare-heated and magnetically confined corona are investigated in the reduced magnetohydrodynamic regime. Field lines originating from current sheets form coherent structures, calle d Current Sheet Connected (CSC) regions, extended around them. CSC field line random walk is strongly anisotropic, with preferential diffusion along the current sheets in-plane length. CSC field line random walk properties remain similar to those of the entire ensemble but exhibit enhanced mean square displacements and separations due to the stronger magnetic field intensities in CSC regions. The implications for particle acceleration and heat transport in the solar corona and wind, and for solar moss formation are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا