ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectra of the subdivision-vertex and subdivision-edge coronae

109   0   0.0 ( 0 )
 نشر من قبل Pengli Lu
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The subdivision graph $mathcal{S}(G)$ of a graph $G$ is the graph obtained by inserting a new vertex into every edge of $G$. Let $G_1$ and $G_2$ be two vertex disjoint graphs. The emph{subdivision-vertex corona} of $G_1$ and $G_2$, denoted by $G_1odot G_2$, is the graph obtained from $mathcal{S}(G_1)$ and $|V(G_1)|$ copies of $G_2$, all vertex-disjoint, by joining the $i$th vertex of $V(G_1)$ to every vertex in the $i$th copy of $G_2$. The emph{subdivision-edge corona} of $G_1$ and $G_2$, denoted by $G_1circleddash G_2$, is the graph obtained from $mathcal{S}(G_1)$ and $|I(G_1)|$ copies of $G_2$, all vertex-disjoint, by joining the $i$th vertex of $I(G_1)$ to every vertex in the $i$th copy of $G_2$, where $I(G_1)$ is the set of inserted vertices of $mathcal{S}(G_1)$. In this paper we determine the adjacency spectra, the Laplacian spectra and the signless Laplacian spectra of $G_1odot G_2$ (respectively, $G_1circleddash G_2$) in terms of the corresponding spectra of $G_1$ and $G_2$. As applications, the results on the spectra of $G_1odot G_2$ (respectively, $G_1circleddash G_2$) enable us to construct infinitely many pairs of cospectral graphs. The adjacency spectra of $G_1odot G_2$ (respectively, $G_1circleddash G_2$) help us to construct many infinite families of integral graphs. By using the Laplacian spectra, we also obtain the number of spanning trees and Kirchhoff index of $G_1odot G_2$ and $G_1circleddash G_2$, respectively.



قيم البحث

اقرأ أيضاً

105 - Xiaogang Liu , Zuhe Zhang 2012
The subdivision graph $mathcal{S}(G)$ of a graph $G$ is the graph obtained by inserting a new vertex into every edge of $G$. Let $G_1$ and $G_2$ be two vertex disjoint graphs. The emph{subdivision-vertex join} of $G_1$ and $G_2$, denoted by $G_1dot{v ee}G_2$, is the graph obtained from $mathcal{S}(G_1)$ and $G_2$ by joining every vertex of $V(G_1)$ with every vertex of $V(G_2)$. The emph{subdivision-edge join} of $G_1$ and $G_2$, denoted by $G_1underline{vee}G_2$, is the graph obtained from $mathcal{S}(G_1)$ and $G_2$ by joining every vertex of $I(G_1)$ with every vertex of $V(G_2)$, where $I(G_1)$ is the set of inserted vertices of $mathcal{S}(G_1)$. In this paper we determine the adjacency spectra, the Laplacian spectra and the signless Laplacian spectra of $G_1dot{vee}G_2$ (respectively, $G_1underline{vee}G_2$) for a regular graph $G_1$ and an arbitrary graph $G_2$, in terms of the corresponding spectra of $G_1$ and $G_2$. As applications, these results enable us to construct infinitely many pairs of cospectral graphs. We also give the number of the spanning trees and the Kirchhoff index of $G_1dot{vee}G_2$ (respectively, $G_1underline{vee}G_2$) for a regular graph $G_1$ and an arbitrary graph $G_2$.
Normaliz is an open-source software for the computation of lattice points in rational polyhedra, or, in a different language, the solutions of linear diophantine systems. The two main computational goals are (i) finding a system of generators of the set of lattice points and (ii) counting elements degree-wise in a generating function, the Hilbert Series. In the homogeneous case, in which the polyhedron is a cone, the set of generators is the Hilbert basis of the intersection of the cone and the lattice, an affine monoid. We will present some improvements to the Normaliz algorithm by subdividing simplicial cones with huge volumes. In the first approach the subdivision points are found by integer programming techniques. For this purpose we interface to the integer programming solver SCIP to our software. In the second approach we try to find good subdivision points in an approximating overcone that is faster to compute.
This paper introduces Neural Subdivision, a novel framework for data-driven coarse-to-fine geometry modeling. During inference, our method takes a coarse triangle mesh as input and recursively subdivides it to a finer geometry by applying the fixed t opological updates of Loop Subdivision, but predicting vertex positions using a neural network conditioned on the local geometry of a patch. This approach enables us to learn complex non-linear subdivision schemes, beyond simple linear averaging used in classical techniques. One of our key contributions is a novel self-supervised training setup that only requires a set of high-resolution meshes for learning network weights. For any training shape, we stochastically generate diverse low-resolution discretizations of coarse counterparts, while maintaining a bijective mapping that prescribes the exact target position of every new vertex during the subdivision process. This leads to a very efficient and accurate loss function for conditional mesh generation, and enables us to train a method that generalizes across discretizations and favors preserving the manifold structure of the output. During training we optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category. Our network encodes patch geometry in a local frame in a rotation- and translation-invariant manner. Jointly, these design choices enable our method to generalize well, and we demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
A standard construction in approximation theory is mesh refinement. For a simplicial or polyhedral mesh D in R^k, we study the subdivision D obtained by subdividing a maximal cell of D. We give sufficient conditions for the module of splines on D to split as the direct sum of splines on D and splines on the subdivided cell. As a consequence, we obtain dimension formulas and explicit bases for several commonly used subdivisions and their multivariate generalizations.
In this paper, we present a family of multivariate grid transfer operators appropriate for anisotropic multigrid methods. Our grid transfer operators are derived from a new family of anisotropic interpolatory subdivision schemes. We study the minimal ity, polynomial reproduction and convergence properties of these interpolatory schemes and link their properties to the convergence and optimality of the corresponding multigrid methods. We compare the performance of our interpolarory grid transfer operators with the ones derived from a family of corresponding approximating subdivision schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا