ترغب بنشر مسار تعليمي؟ اضغط هنا

SUSY contributions to CP violations in $bto s$ and $bto d$ transitions facing on new data

61   0   0.0 ( 0 )
 نشر من قبل Yusuke Shimizu
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the contribution of the gluino-squark mediated flavor changing process for the CP violation in $bto s$ and $bto d$ transitions facing on recent experimental data. The mass insertion parameters of squarks are constrained by the branching ratios of $bto sgamma $ and $bto dgamma $ decays. In addition, the time dependent CP asymmetries of $B^0to phi K_S$ and $B^0to eta K^0$ decays severely restrict the allowed region of the mass insertion parameter for the $bto s$ transition. By using these constraints with squark and gluino masses of 1.5 TeV, we predict the CP asymmetries of $B_sto phi phi $, $B_sto eta phi $, and $B^0to K^0bar K^0$ decays, as well as the CP asymmetries in $bto sgamma $ and $bto dgamma $ decays. The CP violation in the $B_sto phi phi$ decay is expected to be large owing to the squark flavor mixing, which will be tested at LHCb soon.


قيم البحث

اقرأ أيضاً

We present results of global fits of all relevant experimental data on rare $b to s$ decays. We observe significant tensions between the Standard Model predictions and the data. After critically reviewing the possible sources of theoretical uncertain ties, we find that within the Standard Model, the tensions could be explained if there are unaccounted hadronic effects much larger than our estimates. Assuming hadronic uncertainties are estimated in a sufficiently conservative way, we discuss the implications of the experimental results on new physics, both model independently as well as in the context of the minimal supersymmetric standard model and models with flavour-changing $Z$ bosons. We discuss in detail the violation of lepton flavour universality as hinted by the current data and make predictions for additional lepton flavour universality tests that can be performed in the future. We find that the ratio of the forward-backward asymmetries in $B to K^* mu^+mu^-$ and $B to K^* e^+e^-$ at low dilepton invariant mass is a particularly sensitive probe of lepton flavour universality and allows to distinguish between different new physics scenarios that give the best description of the current data.
$B$ decays proceeding via $bto cell u$ transitions with $ell=e$ or $mu$ are tree-level processes in the Standard Model. They are used to measure the CKM element $V_{cb}$, as such forming an important ingredient in the determination of e.g. the unitar ity triangle; hence the question to which extent they can be affected by new physics contributions is important, specifically given the long-standing tension between $V_{cb}$ determinations from inclusive and exclusive decays and the significant hints for lepton flavour universality violation in $bto ctau u$ and $bto sellell$ decays. We perform a comprehensive model-independent analysis of new physics in $bto cell u$, considering all combinations of scalar, vector and tensor interactions occuring in single-mediator scenarios. We include for the first time differential distributions of $Bto D^*ell u$ angular observables for this purpose. We show that these are valuable in constraining non-standard interactions. Specifically, the zero-recoil endpoint of the $Bto Dell u$ spectrum is extremely sensitive to scalar currents, while the maximum-recoil endpoint of the $Bto D^*ell u$ spectrum with transversely polarized $D^*$ is extremely sensitive to tensor currents. We also quantify the room for $e$-$mu$ universality violation in $bto cell u$ transitions, predicted by some models suggested to solve the $bto ctau u$ anomalies, from a global fit to $Bto Dell u$ and $Bto D^*ell u$ for the first time. Specific new physics models, corresponding to all possible tree-level mediators, are also discussed. As a side effect, we present $V_{cb}$ determinations from exclusive $B$ decays, both with frequentist and Bayesian statistics, leading to compatible results. The entire numerical analysis is based on open source code, allowing it to be easily adapted once new data or new form factors become available.
We investigate the possibility of explaining the enhancement in semileptonic decays of $bar B to D^{(*)} tau bar u$, the anomalies induced by $bto smu^+mu^-$ in $bar Bto (K, K^*, phi)mu^+mu^-$ and violation of lepton universality in $R_K = Br(bar Bt o K mu^+mu^-)/Br(bar Bto K e^+e^-)$ within the framework of R-parity violating (RPV) MSSM. Exchange of down type right-handed squark coupled to quarks and leptons yield interactions which are similar to leptoquark induced interactions that have been proposed to explain the $bar B to D^{(*)} tau bar u$ by tree level interactions and $bto s mu^+mu^-$ anomalies by loop induced interactions, simultaneously. However, the Yukawa couplings in such theories have severe constraints from other rare processes in $B$ and $D$ decays. Although this interaction can provide a viable solution to $R(D^{(*)})$ anomaly, we show that with the severe constraint from $bar B to K u bar u$, it is impossible to solve the anomalies in $bto s mu^+mu^-$ process simultaneously.
In the Standard Model (SM), the rare transitions where a bottom quark decays into a strange quark and a pair of light leptons exhibit a potential sensitivity to physics beyond the SM. In addition, the SM embeds Lepton Flavour Universality (LFU), lead ing to almost identical probabilities for muon and electron modes. The LHCb collaboration discovered a set of deviations from the SM expectations in decays to muons and also in ratios assessing LFU. Other experiments (Belle, ATLAS, CMS) found consistent measurements, albeit with large error bars. We perform a global fit to all available $bto sell^+ell^-$ data ($ell=e,mu$) in a model-independent way allowing for different patterns of New Physics. For the first time, the NP hypothesis is preferred over the SM by $5,sigma$ in a general case when NP can enter SM-like operators and their chirally-flipped partners. LFU violation is favoured with respect to LFU at the 3-4$,sigma$ level. We discuss the impact of LFU-violating New Physics on the observable $P_5^prime$ from $B to K^*mu^+mu^-$ and we compare our estimate for long-distance charm contributions with an empirical model recently proposed by a group of LHCb experimentalists. Finally, we discuss NP models able to describe this consistent pattern of deviations.
We perform a data-driven analysis of new physics (NP) effects in exclusive $b to s ell^+ell^-$ decays in a model-independent effective theory approach with dimension six operators considering scalar, pseudo-scalar, vector and axial-vector operators w ith the corresponding Wilson coefficients (WC) taken to be complex. The analysis has been done with the most recent data while comparing the outcome with that from the relatively old data-set. We find that a left-handed quark current with vector muon coupling is the only one-operator $(mathcal{O}_9)$ scenario that can explain the data in both the cases with real and complex WC with a large non-zero imaginary contribution. We simultaneously apply model selection tools like cross-validation and information-theoretic approach like Akaike Information Criterion (AIC) to find out the operator or sets of operators that can best explain the available data in this channel. The $mathcal{O}_9$ with complex WC is the only one-operator scenario which survives the test. However, there are a few two and three-operator scenarios (with real or complex WCs) which survive the test, and the operator $mathcal{O}_9$ is common among them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا