ﻻ يوجد ملخص باللغة العربية
A multiresolution analysis is a nested chain of related approximation spaces.This nesting in turn implies relationships among interpolation bases in the approximation spaces and their derived wavelet spaces. Using these relationships, a necessary and sufficient condition is given for existence of interpolation wavelets, via analysis of the corresponding scaling functions. It is also shown that any interpolation function for an approximation space plays the role of a special type of scaling function (an interpolation scaling function) when the corresponding family of approximation spaces forms a multiresolution analysis. Based on these interpolation scaling functions, a new algorithm is proposed for constructing corresponding interpolation wavelets (when they exist in a multiresolution analysis). In simulations, our theorems are tested for several typical wavelet spaces, demonstrating our theorems for existence of interpolation wavelets and for constructing them in a general multiresolution analysis.
We study the two primary families of spaces of finite element differential forms with respect to a simplicial mesh in any number of space dimensions. These spaces are generalizations of the classical finite element spaces for vector fields, frequentl
In this paper we consider interpolation in model spaces, $H^2 ominus B H^2$ with $B$ a Blaschke product. We study unions of interpolating sequences for two sequences that are far from each other in the pseudohyperbolic metric as well as two sequences
We prove thatthe Banach space $(oplus_{n=1}^infty ell_p^n)_{ell_q}$, which is isomorphic to certain Besov spaces, has a greedy basis whenever $1leq p leqinfty$ and $1<q<infty$. Furthermore, the Banach spaces $(oplus_{n=1}^infty ell_p^n)_{ell_1}$, wit
We study the problem of improving the greedy constant or the democracy constant of a basis of a Banach space by renorming. We prove that every Banach space with a greedy basis can be renormed, for a given $vare>0$, so that the basis becomes $(1+vare)
Expected duality and approximation properties are shown to fail on Bergman spaces of domains in $mathbb{C}^n$, via examples. When the domain admits an operator satisfying certain mapping properties, positive duality and approximation results are prov