ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs Couplings at the End of 2012

297   0   0.0 ( 0 )
 نشر من قبل B\\'eranger Dumont
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Performing a fit to all publicly available data, we analyze the extent to which the latest results from the LHC and Tevatron constrain the couplings of the Higgs boson-like state at ~ 125 GeV. To this end we assume that only Standard Model (SM) particles appear in the Higgs decays, but tree-level Higgs couplings to the up-quarks, down-quarks and vector bosons, relative to the SM are free parameters. We also assume that the leptonic couplings relative to the SM are the same as for the down-quark, and a custodial symmetry for the V=W,Z couplings. In the simplest approach, the effective Higgs couplings to gluons and photons are computed in terms of the previous parameters. This approach is also applied to Two-Higgs-Doublet Models of Type I and Type II. However, we also explore the possibility that the net Higgs to gluon-gluon and gamma-gamma couplings have extra loop contributions coming from Beyond-the-Standard Model physics. We find that the SM p-value ~ 0.5 is more than 2 sigma away from fits in which: a) there is some non-SM contribution to the gamma-gamma coupling of the Higgs; or b) the sign of the top quark coupling to the Higgs is opposite that of the W coupling. In both these cases p-values ~ 0.9 can be achieved. Since option b) is difficult to realize in realistic models, it would seem that new physics contributions to the effective couplings of the Higgs are preferred.

قيم البحث

اقرأ أيضاً

We study the off-shell production of the Higgs boson at the LHC to probe Higgs physics at higher energy scales utilizing the process $g g rightarrow h^{*} rightarrow ZZ$. We focus on the energy scale dependence of the off-shell Higgs propagation, and of the top quark Yukawa coupling, $y_t (Q^2)$. Extending our recent study in arXiv:1710.02149, we first discuss threshold effects in the Higgs propagator due to the existence of new states, such as a gauge singlet scalar portal, and a possible continuum of states in a conformal limit, both of which would be difficult to discover in other traditional searches. We then examine the modification of $y_t (Q^2)$ from its Standard Model (SM) prediction in terms of the renormalization group running of the top Yukawa, which could be significant in the presence of large flat extra-dimensions. Finally, we explore possible strongly coupled new physics in the top-Higgs sector that can lead to the appearance of a non-local $Q^2$-dependent form factor in the effective top-Higgs vertex. We find that considerable deviations compared to the SM prediction in the invariant mass distribution of the $Z$-boson pair can be conceivable, and may be probed at a $2sigma$-level at the high-luminosity 14 TeV HL-LHC for a new physics scale up to $mathcal{O}(1 {~rm TeV})$, and at the upgraded 27 TeV HE-LHC for a scale up to $mathcal{O}(3 {~rm TeV})$. For a few favorable scenarios, $5sigma$-level observation may be possible at the HE-LHC for a scale of about $mathcal{O}(1 {~rm TeV})$.
We review the study of the charged Higgs and top quark associated production at the LHC with the presence of an additional scalar doublet. Top quark spin effects are related to the Higgs fermion couplings through this process. The angular distributio ns with respect to top quark spin turn out to be distinctive observables to study the $Htb$ interaction in different models.
In extended Higgs sectors that exhibit alignment without decoupling, the additional scalars are allowed to have large couplings to the Standard Model Higgs. We show that current nonresonant di-Higgs searches can be straightforwardly adapted to look f or additional Higgses in these scenarios, where pair production of non-SM Higgses can be enhanced. For concreteness, we study pair production of exotic Higgses in the context of an almost inert two Higgs doublet model, where alignment is explained through an approximate $mathbb{Z}_2$ symmetry under which the additional scalars are odd. In this context, the smallness of the $mathbb Z_2$ violating parameter suppresses single production of exotic Higgses, but it does not prevent a sizeable trilinear coupling $hHH$ between the SM Higgs ($h$) and the additional states ($H$). We study the process $pprightarrow h^* rightarrow HH$ in the final states $bbar b b bar b$, $bbar bgammagamma$, and multi-leptons. We find that at the HL-LHC these modes could be sensitive to masses of the additional neutral scalars in the range $130mbox{ GeV} lesssim m_H lesssim 290mbox{ GeV}$.
289 - E.W. Varnes 2012
The search for the Higgs boson, both in the context of the standard model and extensions to it, has been a key focus during Run II of the Tevatron. I report on the status of these searches, which are highlighted by evidence at the 3 standard deviatio n level for the SM Higgs in its $bbar{b}$ decay mode, the strongest direct evidence to date for fermionic couplings of the Higgs boson.
We consider tan(beta)-enhanced quantum effects in the minimal supersymmetric standard model (MSSM) including those from the Higgs sector. To this end, we match the MSSM to an effective two-Higgs doublet model (2HDM), assuming that all SUSY particles are heavy, and calculate the coefficients of the operators that vanish or are suppressed in the MSSM at tree-level. Our result clarifies the dependence of the large-tan(beta) resummation on the renormalization convention for tan(beta), and provides analytic expressions for the Yukawa and trilinear Higgs interactions. The numerical effect is analyzed by means of a parameter scan, and we find that the Higgs-sector effects, where present, are typically larger than those from the wrong-Higgs Yukawa couplings in the 2HDM.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا