ترغب بنشر مسار تعليمي؟ اضغط هنا

Cavity Optomechanics of Levitated Nano-Dumbbells: Non-Equilibrium Phases and Self-Assembly

87   0   0.0 ( 0 )
 نشر من قبل Wolfgang Lechner
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Levitated nanospheres in optical cavities open a novel route to study many-body systems out of solution and highly isolated from the environment. We show that properly tuned optical parameters allow for the study of the non-equilibrium dynamics of composite nano-particles with non-isotropic optical friction. We find friction induced ordering and nematic transitions with non-equilibrium analogs to liquid crystal phases for ensembles of dimers.

قيم البحث

اقرأ أيضاً

318 - G. D. Cole , P.-L. Yu , C. Gartner 2014
We investigate the optomechanical properties of tensile-strained ternary InGaP nanomembranes grown on GaAs. This material system combines the benefits of highly strained membranes based on stoichiometric silicon nitride, with the unique properties of thin-film semiconductor single crystals, as previously demonstrated with suspended GaAs. Here we employ lattice mismatch in epitaxial growth to impart an intrinsic tensile strain to a monocrystalline thin film (approximately 30 nm thick). These structures exhibit mechanical quality factors of 2*10^6 or beyond at room temperature and 17 K for eigenfrequencies up to 1 MHz, yielding Q*f products of 2*10^12 Hz for a tensile stress of ~170 MPa. Incorporating such membranes in a high finesse Fabry-Perot cavity, we extract an upper limit to the total optical loss (including both absorption and scatter) of 40 ppm at 1064 nm and room temperature. Further reductions of the In content of this alloy will enable tensile stress levels of 1 GPa, with the potential for a significant increase in the Q*f product, assuming no deterioration in the mechanical loss at this composition and strain level. This materials system is a promising candidate for the integration of strained semiconductor membrane structures with low-loss semiconductor mirrors and for realizing stacks of membranes for enhanced optomechanical coupling.
We report dispersive coupling of an optically trapped silica nanoparticle ($143~$nm diameter) to the field of a driven Fabry-Perot cavity in high vacuum ($4.3times 10^{-6}~$mbar). We demonstrate nanometer-level control in positioning the particle wit h respect to the intensity distribution of the cavity field, which allows access to linear, quadratic and tertiary optomechanical interactions in the resolved sideband regime. We determine all relevant coupling rates of the system, i.e. mechanical and optical losses as well as optomechanical interaction, and obtain a quantum cooperativity of $C_Q = 0.01$. Based on the presented performance the regime of strong cooperativity ($C_Q > 1$) is clearly within reach by further decreasing the mode volume of the cavity.
Nonclassical optomechanical correlations enable optical control of mechanical motion beyond the limitations of classical driving. Here we investigate the feasibility of using pulsed cavity-optomechanics to create and verify nonclassical phase-sensiti ve correlations between light and the motion of a levitated nanoparticle in a realistic scenario. We show that optomechanical two-mode squeezing can persist even at the elevated temperatures of state-of-the-art experimental setups. We introduce a detection scheme based on optical homodyning that allows revealing nonclassical correlations without full optomechanical state tomography. We provide an analytical treatment using the rotating wave approximation (RWA) in the resolved-sideband regime and prove its validity with a full numerical solution of the Lyapunov equation beyond the RWA. We build on parameters of current experiments for our analysis and conclude that the observation of nonclassical correlations is possible today.
We describe a proposal for a new type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He, evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of $^{4}mathrm {He}$). Alternatively, for a normal fluid drop of $^3 mathrm{He}$, we propose to exploit the coupling between the drops rotations and vibrations to perform quantum non-demolition measurements of angular momentum.
Laser trapped nanoparticles have been recently used as model systems to study fundamental relations holding far from equilibrium. Here we study, both experimentally and theoretically, a nanoscale silica sphere levitated by a laser in a low density ga s. The center of mass motion of the particle is subjected, at the same time, to feedback cooling and a parametric modulation driving the system into a non-equilibrium steady state. Based on the Langevin equation of motion of the particle, we derive an analytical expression for the energy distribution of this steady state showing that the average and variance of the energy distribution can be controlled separately by appropriate choice of the friction, cooling and modulation parameters. Energy distributions determined in computer simulations and measured in a laboratory experiment agree well with the analytical predictions. We analyse the particle motion also in terms of the quadratures and find thermal squeezing depending on the degree of detuning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا