ترغب بنشر مسار تعليمي؟ اضغط هنا

Freudenthal Dual Lagrangians

39   0   0.0 ( 0 )
 نشر من قبل Leron Borsten
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The global U-dualities of extended supergravity have played a central role in differentiating the distinct classes of extremal black hole solutions. When the U-duality group satisfies certain algebraic conditions, as is the case for a broad class of supergravities, the extremal black holes enjoy a further symmetry known as Freudenthal duality (F-duality), which although distinct from U-duality preserves the Bekenstein-Hawking entropy. Here it is shown that, by adopting the doubled Lagrangian formalism, F-duality, defined on the doubled field strengths, is not only a symmetry of the black hole solutions, but also of the equations of motion themselves. A further role for F-duality is introduced in the context of world-sheet actions. The Nambu-Goto world-sheet action in any (t, s) signature spacetime can be written in terms of the F-dual. The corresponding field equations and Bianchi identities are then related by F-duality allowing for an F-dual formulation of Gaillard-Zumino duality on the world-sheet. An equivalent polynomial Polyakov- type action is introduced using the so-called black hole potential. Such a construction allows for actions invariant under all groups of type E7, including E7 itself, although in this case the stringy interpretation is less clear.

قيم البحث

اقرأ أيضاً

92 - Maxim Grigoriev 2016
It is well-known that a Lagrangian induces a compatible presymplectic form on the equation manifold (stationary surface, understood as a submanifold of the respective jet-space). Given an equation manifold and a compatible presymplectic form therein, we define the first-order Lagrangian system which is formulated in terms of the intrinsic geometry of the equation manifold. It has a structure of a presymplectic AKSZ sigma model for which the equation manifold, equipped with the presymplectic form and the horizontal differential, serves as the target space. For a wide class of systems (but not all) we show that if the presymplectic structure originates from a given Lagrangian, the proposed first-order Lagrangian is equivalent to the initial one and hence the Lagrangian per se can be entirely encoded in terms of the intrinsic geometry of its stationary surface. If the compatible presymplectic structure is generic, the proposed Lagrangian is only a partial one in the sense that its stationary surface contains the initial equation manifold but does not necessarily coincide with it.
We construct a Lagrangian for general nonlinear electrodynamics that features electric and magnetic potentials on equal footing. In the language of this Lagrangian, discrete and continuous electric-magnetic duality symmetries can be straightforwardly imposed, leading to a simple formulation for theories with the $SO(2)$ duality invariance. When specialized to the conformally invariant case, our construction provides a manifestly duality-symmetric formulation of the recently discovered ModMax theory. We briefly comment on a natural generalization of this approach to $p$-forms in $2p+2$ dimensions.
We present a novel double-copy prescription for gauge fields at the Lagrangian level and apply it both to the original double copy and the soft theorem. The Yang-Mills Lagrangian in light-cone gauge is mapped directly to the $mathcal{N}=0$ supergravi ty Lagrangian in light-cone gauge to trilinear order, and we show that the obtained result is manifestly equivalent to Einstein gravity at tree level up to this order. The application of the double-copy prescription to the soft-collinear effective QCD Lagrangian yields an effective description of an energetic Dirac fermion coupled to the graviton, Kalb-Ramond, and dilaton fields, from which the fermionic gravitational soft and next-to-soft theorems follow.
We examine AdS Galileon Lagrangians using the method of non-linear realization. By contractions 1) flat curvature limit and 2) non-relativistic brane algebra limit and 3) (1)+(2) limits we obtain DBI, Newton-Hoock and Galilean Galileons respectively. We make clear how these Lagrangians appear as invariant 4-forms and/or pseudo-invariant Wess-Zumino terms using Maurer-Cartan equations on the coset $G/SO(3,1)$. We show the equations of motion are written in terms of the MC forms only and explain why the inverse Higgs condition is obtained as the equation of motion for all cases. The supersymmetric extension is also examined using SU(2,2|1)/(SO(3,1)x U(1)) supercoset and five WZ forms are constructed. They are reduced to the corresponding five Galileon WZ forms in the bosonic limit and are candidates of for supersymmetric Galileon.
We explore the properties of polynomial Lagrangians for chiral $p$-forms previously proposed by the last named author, and in particular, provide a self-contained treatment of the symmetries and equations of motion that shows a great economy and simp licity of this formalism. We further use analogous techniques to construct polynomial democratic Lagrangians for general $p$-forms where electric and magnetic potentials appear on equal footing as explicit dynamical variables. Due to our reliance on the differential form notation, the construction is compact and universally valid for forms of all ranks, in any number of dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا