ترغب بنشر مسار تعليمي؟ اضغط هنا

Feshbach Resonance in a Synthetic Non-Abelian Gauge Field

233   0   0.0 ( 0 )
 نشر من قبل Vijay Shenoy B
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vijay B. Shenoy




اسأل ChatGPT حول البحث

We study the Feshbach resonance of spin-1/2 particles in the presence of a uniform synthetic non-Abelian gauge field that produces spin orbit coupling along with constant spin potentials. We develop a renormalizable quantum field theory that includes the closed channel boson which engenders the Feshbach resonance, in the presence of the gauge field. By a study of the scattering of two particles in the presence of the gauge field, we show that the Feshbach magnetic field, where the apparent low energy scattering length diverges, depends on the conserved centre of mass momentum of the two particles. For high symmetry gauge fields, such as the one which produces an isotropic Rashba spin orbit coupling, we show that the system supports two bound states over a regime of magnetic fields for a negative background scattering length and resonance width comparable to the energy scale of the spin orbit coupling. We discuss the consequences of these findings for the many body setting, and point out that a broad resonance (width larger than spin orbit coupling energy scale) is most favourable for the realization of the rashbon condensate.



قيم البحث

اقرأ أيضاً

346 - Bikash Padhi 2016
In this article we present a pedagogical discussion of some of the optomechanical properties of a high finesse cavity loaded with ultracold atoms in laser induced synthetic gauge fields of different types. Essentially, the subject matter of this arti cle is an amalgam of two sub-fields of atomic molecular and optical (AMO) physics namely, the cavity optomechanics with ultracold atoms and ultracold atoms in synthetic gauge field. After providing a brief introduction to either of these fields we shall show how and what properties of these trapped ultracold atoms can be studied by looking at the cavity (optomechanical or transmission) spectrum. In presence of abelian synthetic gauge field we discuss the cold-atom analogue of Shubnikov de Haas oscillation and its detection through cavity spectrum. Then, in the presence of a non-abelian synthetic gauge field (spin-orbit coupling), we see when the electromagnetic field inside the cavity is quantized, it provides a quantum optical lattice for the atoms, leading to the formation of different quantum magnetic phases. We also discuss how these phases can be explored by studying the cavity transmission spectrum.
The non-Abelian gauge fields play a key role in achieving novel quantum phenomena in condensed-matter and high-energy physics. Recently, the synthetic non-Abelian gauge fields have been created in the neutral degenerate Fermi gases, and moreover, gen erate many exotic effects. All the previous predictions can be well understood by the microscopic Bardeen-Cooper-Schrieffer theory. In this work, we establish an SU(2) Ginzburg-Landau theory for degenerate Fermi gases with the synthetic non-Abelian gauge fields. We firstly address a fundamental problem how the non-Abelian gauge fields, imposing originally on the Fermi atoms, affect the pairing field with no extra electric charge by a local gauge-field theory,and then obtain the first and second SU(2) Ginzburg-Landau equations. Based on these obtained SU(2) Ginzburg-Landau equations, we find that the superfluid critical temperature of the intra- (inter-) band pairing increases (decreases) linearly, when increasing the strength of the synthetic non-Abelian gauge fields. More importantly, we predict a novel SU(2) non-Abelian Josephson effect, which can be used to design a new atomic superconducting quantum interference device.
Collective (elementary) excitations of quantum bosonic condensates, including condensates of exciton polaritons in semiconductor microcavities, are a sensitive probe of interparticle interactions. In anisotropic microcavities with momentum-dependent TE-TM splitting of the optical modes, the excitations dispersions are predicted to be strongly anisotropic, which is a consequence of the synthetic magnetic gauge field of the cavity, as well as the interplay between different interaction strengths for polaritons in the singlet and triplet spin configurations. Here, by directly measuring the dispersion of the collective excitations in a high-density optically trapped exciton-polariton condensate, we observe excellent agreement with the theoretical predictions for spinor polariton excitations. We extract the inter- and intra-spin polariton interaction constants and map out the characteristic spin textures in an interacting spinor condensate of exciton polaritons.
In this work we present an optical lattice setup to realize a full Dirac Hamiltonian in 2+1 dimensions. We show how all possible external potentials coupled to the Dirac field can arise from perturbations of the existing couplings of the honeycomb la ttice model, without the need of additional laser fields. This greatly simplifies the proposed implementations, requiring only spatial modulations of the intensity of the laser beams. We finally suggest several experiments to observe the properties of the Dirac field in the setup.
We study three-atom inelastic scattering in ultracold textsuperscript{39}K near a Feshbach resonance of intermediate coupling strength. The non-universal character of such resonance leads to an abnormally large Efimov absolute length scale and a rela tively small effective range $r_e$, allowing the features of the textsuperscript{39}K Efimov spectrum to be better isolated from the short-range physics. Meticulous characterization of and correction for finite temperature effects ensure high accuracy on the measurements of these features at large-magnitude scattering lengths. For a single Feshbach resonance, we unambiguously locate four distinct features in the Efimov structure. Three of these features form ratios that obey the Efimov universal scaling to within 10%, while the fourth feature, occurring at a value of scattering length closest to $r_e$, instead deviates from the universal value.
التعليقات (0)
no comments...
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا