ترغب بنشر مسار تعليمي؟ اضغط هنا

Puzzling Frequencies in First Overtone Cepheids

71   0   0.0 ( 0 )
 نشر من قبل Alexey A. Pamyatnykh
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The OGLE project led to discovery of earlier unknown forms of multiperiodic pulsation in Cepheids. Often, the observed periods may be explained in terms of simultaneous excitation of two or rarely three radial modes. However, a secondary variability at about 0.6 of the dominant period, detected in a number of the first overtone (1O) pulsators inhabiting the Magellanic Clouds, seems to require a different explanation. After reviewing a possibility of explaining this signal in terms of radial and nonradial modes, I find that only unstable modes that may reproduce the observed period ratio are f-modes of high angular degrees (l=42-50). I discuss in detail the driving effect behind the instability and show that it is not the familiar opacity mechanism. Finally, I emphasize the main difficulty of this explanation, which requires high intrinsic amplitudes implying large broadening of spectral line.

قيم البحث

اقرأ أيضاً

We present a detailed comparison between predicted and empirical PL_{I,K} relations and Wesenheit function for Galactic and Magellanic Clouds (MCs) First Overtone (FO) Cepheids. We find that zero-points predicted by Galactic Cepheid models based on a noncanonical (mild overshooting) Mass-Luminosity (ML) relation are in very good agreement with empirical zero-points based on HIPPARCOS parallaxes, while those based on canonical (no overshooting) ML relation are about 0.2-0.3 mag brighter. We also find that predicted and empirical PL_K relation and Wesenheit function give, according to optical (V,I OGLE) and near-infrared (NIR, K, 2mass) data, mean distances to the MCs that agree at the 2% level. Individual distances to the Large and the Small Cloud are: 18.53+-0.08-19.04+-0.11 (theory) and 18.48+-0.13-19.01+-0.13 (empirical). Moreover, predicted and empirical FO relations do not present, within the errors, a metallicity dependence. Finaly, we find that the upper limit in the FO period distribution is a robust observable to constrain the accuracy of pulsation models. Current models agree within 0.1 in log P with the observed FO upper limits.
We present the results of binary population simulations of carbon- and nitrogen-enhanced metal-poor (CEMP and NEMP) stars. We show that the observed paucity of very nitrogen-rich stars puts strong constraints on possible modifications of the initial mass function at low metallicity.
Recent studies have revealed a hitherto unknown complexity of Cepheid pulsation. We implement local kernel regression to search for both period and amplitude modulations simultaneously in continuous time and to investigate their detectability, and te st this new method on 53 classical Cepheids from the OGLE-III catalog. We determine confidence intervals using parametric and non-parametric bootstrap sampling to estimate significance and investigate multi-periodicity using a modified pre-whitening approach that relies on time-dependent light curve parameters. We find a wide variety of period and amplitude modulations and confirm that first overtone pulsators are less stable than fundamental mode Cepheids. Significant temporal variations in period are more frequently detected than those in amplitude. We find a range of modulation intensities, suggesting that both amplitude and period modulations are ubiquitous among Cepheids. Over the 12-year baseline offered by OGLE-III, we find that period changes are often non-linear, sometimes cyclic, suggesting physical origins beyond secular evolution. Our method more efficiently detects modulations (period and amplitude) than conventional methods reliant on pre-whitening with constant light curve parameters and more accurately pre-whitens time series, removing spurious secondary peaks effectively.
The behavior of the shock wave in the atmosphere of the non-fundamental mode RR Lyrae pulsator remains a mystery. In this work, we firstly report a blueshifted Mg triplet emission in continuous spectroscopic observations for a non-Blazhko RRc pulsato r (Catalina-1104058050978) with LAMOST medium resolution spectra. We analyse the photometric observations from Catalina Sky Survey of this RRc pulsator with pre-whitening sequence method and provide the ephemeris and phases. An additional frequency signal with $P_1/P_x = 0.69841$ is detected and discussed. The redshift and radial velocity of the spectra are provided by fitting process with $Sacute{e}rsic$ functions and cross-correlation method. Moreover, we plot the variation of H$alpha$ and Mg lines in a system comoving with the pulsation. Clear evolution of comoving blueshifted hydrogen and Mg emission is observed, which further confirms the existence of shock waves in RRc pulsators. The shock-triggered emission lasts over $15%$ of the pulsation cycle, which is much longer than the previous observations.
64 - Alfred Gautschy 2019
The shape of light cures of fundamental-mode and of first-overtone pulsators, as observed in RR~Lyrae variables and Cepheids, differ characteristically. The stellar physical origin of the morphological differences is not well documented and the topic seems not to be part of the elementary curriculum of students of stellar variability. To ameliorate the situation, this exposition analyzes hydrodynamical simulations of radial pulsations computed with the newly available numerical instrument RSP in MESA. The stellar physical processes that affect the light curves are identified and contrasted to the explanation based on experiments with one-zone models. The encounter of first-overtone pulsators sporting light curves that mimic those of fundamental-mode variables serves as a warning that light-curve morphology alone is not a reliable path to correctly classify pulsating variables; the exposition closes with a short discussion of constraints these modes might impose on understanding the origin of anomalous Cepheids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا