ﻻ يوجد ملخص باللغة العربية
Based on high-resolution spectra obtained during gravitational microlensing events we present a detailed elemental abundance analysis of 32 dwarf and subgiant stars in the Galactic bulge. [ABRIDGED], we now have 58 microlensed bulge dwarfs and subgiants that have been homogeneously analysed. The main characteristics of the sample and the findings that can be drawn are: (i) The metallicity distribution (MDF) is wide and spans all metallicities between [Fe/H]=-1.9 to +0.6; (ii) The dip in the MDF around solar metallicity that was apparent in our previous analysis of a smaller sample (26 microlensed stars) is no longer evident; instead it has a complex structure and indications of multiple components are starting to emerge. [ABRIDGED]; (iii) The stars with [Fe/H]<-0.1 are old with ages between 10 and 12 Gyr; (iv) The metal-rich stars with [Fe/H]>-0.1 show a wide variety of ages, ranging from 2 to 12 Gyr with a distribution that has a dominant peak around 4-5 Gyr and a tail towards higher ages; (v) There are indications in the [alpha/Fe] - [Fe/H] that the knee occurs around [Fe/H] = -0.3 to -0.2, which is a slightly higher metallicity as compared to the knee for the local thick disk. This suggests that the chemical enrichment of the metal-poor bulge has been somewhat faster than what is observed for the local thick disk. The results from the microlensed bulge dwarf stars in combination with other findings in the literature, in particular the evidence that the bulge has cylindrical rotation, indicate that the Milky Way could be an almost pure disk galaxy. The bulge would then just be a conglomerate of the other Galactic stellar populations (thin disk, thick disk, halo, and ...?), residing together in the central parts of the Galaxy, influenced by the Galactic bar.
Lithium abundances are presented for 91 dwarf and subgiant stars in the Galactic bulge. The analysis is based on line synthesis of the 7Li line at 6707 {AA} in high-resolution spectra obtained during gravitational microlensing events, when the bright
CONTEXT: [ABRIDGED]. For the Milky Way bulge, there are currently essentially no measurements of carbon in un-evolved stars, hampering our abilities to properly compare Galactic chemical evolution models to observational data for this still enigmatic
AIMS. Our aims are twofold. First we aim to evaluate the robustness and accuracy of stellar parameters and detailed elemental abundances that can be derived from high-resolution spectroscopic observations of microlensed dwarf and subgiant stars. We t
The Bulge is the least understood major stellar population of the Milky Way. Most of what we know about the formation and evolution of the Bulge comes from bright giant stars. The underlying assumption that giants represent all the stars, and accurat
We present a detailed elemental abundance study of 90 F and G dwarf, turn-off and subgiant stars in the Galactic bulge. Based on high-resolution spectra acquired during gravitational microlensing events, stellar ages and abundances for 11 elements (N