ترغب بنشر مسار تعليمي؟ اضغط هنا

Medium Baseline Reactor Neutrino Experiments with 2 Identical Detectors

193   0   0.0 ( 0 )
 نشر من قبل Jarah Evslin
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In the next 10 years medium baseline reactor neutrino experiments will attempt to determine the neutrino mass hierarchy and to precisely measure {theta}_12. Both of these determinations will be more reliable if data from identical detectors at distinct baselines are combined. While interference effects can be eliminated by choosing detector sites orthogonal to the reactor arrays, one of the greatest challenges facing a determination of the mass hierarchy is the detectors unknown energy response. By comparing peaks at similar energies at two identical detectors at distinct baselines, one eliminates any correlated dependence upon a monotonic energy response. In addition, a second detector leads to new hierarchy-dependent observables, such as the ratio of the locations of the maxima of the Fourier cosine transforms. Simultaneously, one may determine the hierarchy by comparing the {chi}^2 best fits of {Delta}M^2_32 at the two detectors using the spectra associated to both hierarchies. A second detector at a distinct baseline also breaks the degeneracy between {theta}_12 and the background neutrino flux from, for example, distant reactors and increases the effective target mass, which is limited by current designs to about 20 kton/detector.


قيم البحث

اقرأ أيضاً

The experimental bound on lifetime of nu_3, the neutrino mass eigenstate with the smallest nu_e component, is much weaker than those of nu_1 and nu_2 by many orders of magnitude to which the astrophysical constraints apply. We argue that the future r eactor neutrino oscillation experiments with medium-baseline (~ 50 km), such as JUNO or RENO-50, has the best chance of placing the most stringent constraint on nu_3 lifetime among all neutrino experiments which utilize the artificial source neutrinos. Assuming decay into invisible states, we show by a detailed chi^2 analysis that the nu_3 lifetime divided by its mass, tau_3/m_3, can be constrained to be tau_3/m_3 > 7.5 (5.5) x 10^{-11} s/eV at 95% (99%) C.L. by 100 kt.years exposure by JUNO. It may be further improved to the level comparable to the atmospheric neutrino bound by its longer run. We also discuss to what extent nu_3 decay affects mass-ordering determination and precision measurements of the mixing parameters.
We examine the potential of the future medium-baseline reactor neutrino oscillation (MBRO) experiments in studying neutrino wave-packet impact. In our study, we treat neutrinos as wave packets and use the corresponding neutrino flavor transition prob abilities. The delocalization, separation and spreading of the wave packets lead to decoherence and dispersion effects, which modify the plane-wave neutrino oscillation pattern, by amounts that depend on the energy uncertainties in the initial neutrino wave packets. We find that MBRO experiments could be sensitive to the wave-packet impact, since the baseline is long enough and also the capability of observing small corrections to the neutrino oscillations due to excellent detector energy resolution. Besides studying the constraints on the decoherence parameter, we also examine the potential wave-packet impacts on the precision of measuring $theta_{12}$ and other oscillation parameters in the future medium-baseline reactor neutrino oscillation experiments. Moreover, we also probe the potential benefits of an additional detector for studying such exotic neutrino physics.
Medium-baseline reactor neutrino oscillation experiments (MBRO) have been proposed to determine the neutrino mass hierarchy (MH) and to make precise measurements of the neutrino oscillation parameters. With sufficient statistics, better than ~3%/sqrt {E} energy resolution and well understood energy non-linearity, MH can be determined by analyzing oscillation signals driven by the atmospheric mass-squared difference in the survival spectrum of reactor antineutrinos. With such high performance MBRO detectors, oscillation parameters, such as sin^22theta_{12}, Delta m^2_{21}, and Delta m^2_{32}, can be measured to sub-percent level, which enables a future test of the PMNS matrix unitarity to ~1% level and helps the forthcoming neutrinoless double beta decay experiments to constrain the allowed <m_{beta beta}> values. Combined with results from the next generation long-baseline beam neutrino and atmospheric neutrino oscillation experiments, the MH determination sensitivity can reach higher levels. In addition to the neutrino oscillation physics, MBRO detectors can also be utilized to study geoneutrinos, astrophysical neutrinos and proton decay. We propose to start a U.S. R&D program to identify, quantify and fulfill the key challenges essential for the success of MBRO experiments.
80 - HyangKyu Park 2017
We propose to search for light $U(1)$ dark photons, $A$, produced via kinetically mixing with ordinary photons via the Compton-like process, $gamma e^- rightarrow A e^-$, in a nuclear reactor and detected by their interactions with the material in th e active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on $epsilon$, the $A$-$gamma$ mixing parameter, $epsilon$, for dark-photon masses below 1$sim$MeV of $epsilon~< ~1.3times 10^{-5}$ and $epsilon~<~2.1times 10^{-5}$, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.
228 - Tommy Ohlsson , He Zhang 2008
We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on theta_13. We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles theta_13 and theta_12 are discussed in detailed. Finally, we show that, even for a vanishing theta_13, an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا