ترغب بنشر مسار تعليمي؟ اضغط هنا

A few fin

45   0   0.0 ( 0 )
 نشر من قبل Rita Bernabei
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف R. Bernabei




اسأل ChatGPT حول البحث

A few final comments on arXiv:1210.7548 are given to confute incorrect arguments claimed there.

قيم البحث

اقرأ أيضاً

Here we present the first demonstration and in-depth study of unreleased acoustic resonators in 14nm FinFET technology in the IEEE X band, which offer a zero-barrier-to-entry solution for high Q, small footprint, resonant tanks integrated seamlessly in advanced CMOS nodes. These devices leverage phononic waveguides for acoustic confinement, and exploit MOS capacitors and transistors inherent to the technology to electromechanically drive and sense acoustic vibrations. Sixteen device variations are analyzed across thirty bias points to discern the impact of phononic confinement, gate length, and termination scheme on resonator properties. The limiting factor in FinFET resonator performance among design variations tested is shown to be Back End of Line (BEOL) confinement, with devices with acoustic waveguides incorporating Mx and Cx metal layers exhibiting 2.2x higher average quality factor (Q) and peak amplitude, with maximum Q increasing from 115 to 181 and maximum amplitude scaling from 0.8 to 4.5 uS. A detailed analysis of biasing in the highest performing device shows good fit with a derived model, which addresses the velocity saturated piezoresistive effect for the first time in active resonant transistors. Peak differential transconductance that is dominated by changes in the silicon band-structure, as expected from an analysis that includes contributions from the piezoresistive effect, electrostatic modulation, and silicon bandgap modulation.
Recent years have seen rapid developments in our knowledge and understanding of meson spectroscopy, especially in the charm quark sectors. In my invited overview I discussed some of these recent new developments, including theoretical developments, n ew production mechanisms such as B decays and double charmonium production, and the discovery of several of the many new candidates for excited charmonia, charm meson molecules, and hybrid (excited glue) mesons, in both charmonium and light quark sectors. In this writeup, due to length constraints I will restrict my discussion to a few examples of these new states, some of their broader theoretical implications, and future prospects.
94 - Moto Togawa 2020
We resonantly excite the $K$ series of O$^{5+}$ and O$^{6+}$ up to principal quantum number $n=11$ with monochromatic x rays, producing $K$-shell holes, and observe their relaxation by soft-x-ray emission. Some photoabsorption resonances of O$^{5+}$ reveal strong two-electron--one-photon (TEOP) transitions. We find that for the $[(1s,2s)_1,5p_{3/2}]_{3/2;1/2}$ states, TEOP relaxation is by far stronger than the radiative decay and competes with the usually much faster Auger decay path. This enhanced TEOP decay arises from a strong correlation with the near-degenerate upper states $[(1s,2p_{3/2})_1,4s]_{3/2;1/2}$ of a Li-like satellite blend of the He-like $Kalpha$ transition. Even in three-electron systems, TEOP transitions can play a dominant role, and the present results should guide further research on the ubiquitous and abundant many-electron ions where electronic energy degeneracies are far more common and configuration mixing is stronger.
141 - Agustin Sabio Vera 2020
This is a personal recollection of several results involving the phenomenological study of the multi-Regge limit of scattering amplitudes. None of them would have been possible without the encouragement and constant support from Lev Nikolaevich Lipatov.
Understanding the launching, acceleration, and collimation of jets powered by active galactic nuclei remains an outstanding problem in relativistic astrophysics. This is partly because observational tests of jet formation models suffer from the limit ed angular resolution of ground-based very long baseline interferometry that has thus far been able to probe the transverse jet structure in the acceleration and collimation zone of only two sources. Here we report radio interferometric observations of 3C 84 (NGC 1275), the central galaxy of the Perseus cluster, made with an array including the orbiting radio telescope of the RadioAstron mission. The obtained image transversely resolves the edge-brightened jet in 3C 84 only 30 microarcseconds from the core, which is ten times closer to the central engine than what has been possible in previous ground-based observations, and it allows us to measure the jet collimation profile from ~ 100 to ~10000 gravitational radii from the black hole. The previously found, almost cylindrical jet profile on scales larger than a few thousand r_g is now seen to continue at least down to a few hundred r_g from the black hole and we find a broad jet with a transverse radius larger than about 250 r_g at only 350 r_g from the core. If the bright outer jet layer is launched by the black hole ergosphere, it has to rapidly expand laterally on scales smaller than 100 r_g. If this is not the case, then this jet sheath is likely launched from the accretion disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا