ﻻ يوجد ملخص باللغة العربية
In the hard-core model on a finite graph we are given a parameter lambda>0, and an independent set I arises with probability proportional to lambda^|I|. On infinite graphs a Gibbs distribution is defined as a suitable limit with the correct conditional probabilities. In the infinite setting we are interested in determining when this limit is unique and when there is phase coexistence, i.e., existence of multiple Gibbs states. On finite graphs we are interested in determining the mixing time of local Markov chains. On Z^2 it is conjectured that these problems are related and that both undergo a phase transition at some critical point lambda_c approx 3.79. For phase coexistence, much of the work to date has focused on the regime of uniqueness, with the best result being recent work of Restrepo et al. showing that there is a unique Gibbs state for all lambda < 2.3882. Here we give the first non-trivial result in the other direction, showing that there are multiple Gibbs states for all lambda > 5.3646. Our proof adds two significant innovations to the standard Peierls argument. First, building on the idea of fault lines introduced by Randall, we construct an event that distinguishes two boundary conditions and always has long contours associated with it, obviating the need to accurately enumerate short contours. Second, we obtain vastly improved bounds on the number of contours by relating them to a new class of self-avoiding walks on an oriented version of Z^2. We extend our characterization of fault lines to show that local Markov chains will mix slowly when lambda > 5.3646 on lattice regions with periodic (toroidal) boundary conditions and when lambda > 7.1031 with non-periodic (free) boundary conditions. The arguments here rely on a careful analysis that relates contours to taxi walks and represent a sevenfold improvement to the previously best known values of lambda.
Studies of free particles in low-dimensional quantum systems such as two-leg ladders provide insight into the influence of statistics on collective behaviour. The behaviours of bosons and fermions are well understood, but two-dimensional systems also
For $Delta ge 5$ and $q$ large as a function of $Delta$, we give a detailed picture of the phase transition of the random cluster model on random $Delta$-regular graphs. In particular, we determine the limiting distribution of the weights of the orde
Let $H_{mathrm{WR}}$ be the path on $3$ vertices with a loop at each vertex. D. Galvin conjectured, and E. Cohen, W. Perkins and P. Tetali proved that for any $d$-regular simple graph $G$ on $n$ vertices we have $$hom(G,H_{mathrm{WR}})leq hom(K_{d+1}
We study regular graphs in which the random walks starting from a positive fraction of vertices have small mixing time. We prove that any such graph is virtually an expander and has no small separator. This answers a question of Pak [SODA, 2002]. As
Guided by the theory of graph limits, we investigate a variant of the cut metric for limit objects of sequences of discrete probability distributions. Apart from establishing basic results, we introduce a natural operation called {em pinning} on the