ترغب بنشر مسار تعليمي؟ اضغط هنا

Helicity Condensation as the Origin of Coronal and Solar Wind Structure

382   0   0.0 ( 0 )
 نشر من قبل Spiro K. Antiochos
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. K. Antiochos




اسأل ChatGPT حول البحث

Three of the most important and most puzzling features of the Suns atmosphere are the smoothness of the closed field corona, the accumulation of magnetic shear at photospheric polarity inversion lines (PIL), and the complexity of the slow wind. We propose that a single process, helicity condensation, is the physical mechanism giving rise to all three features. A simplified model is presented for how helicity is injected and transported in the closed corona by magnetic reconnection. With this model we demonstrate that helicity must condense onto PILs and coronal hole boundaries, and estimate the rate of helicity accumulation at PILs and the loss to the wind. Our results can account for many of the observed properties of the closed corona and wind.

قيم البحث

اقرأ أيضاً

128 - A. R. Yeates 2020
Potential field extrapolations are widely used as minimum-energy models for the Suns coronal magnetic field. As the reference to which other magnetic fields are compared, they have -- by any reasonable definition -- no global (signed) magnetic helici ty. Here we investigate the internal topological structure that is not captured by the global helicity integral, by splitting it into individual field line helicities. These are computed using potential field extrapolations from magnetogram observations over Solar Cycle 24, as well as for a simple illustrative model of a single bipolar region in a dipolar background. We find that localised patches of field line helicity arise primarily from linking between strong active regions and their overlying field, so that the total unsigned helicity correlates with the product of photospheric and open fluxes. Within each active region, positive and negative helicity may be unbalanced, but the signed helicity is only around a tenth of the unsigned helicity. Interestingly, in Cycle 24, there is a notable peak in unsigned helicity caused by a single large active region. On average, the total unsigned helicity at the resolution considered is approximately twice the typical signed helicity of a single real active region, according to non-potential models in the literature.
This paper reviews our growing understanding of the physics behind coronal heating (in open-field regions) and the acceleration of the solar wind. Many new insights have come from the last solar cycles worth of observations and theoretical work. Meas urements of the plasma properties in the extended corona, where the primary solar wind acceleration occurs, have been key to discriminating between competing theories. We describe how UVCS/SOHO measurements of coronal holes and streamers over the last 14 years have provided clues about the detailed kinetic processes that energize both fast and slow wind regions. We also present a brief survey of current ideas involving the coronal source regions of fast and slow wind streams, and how these change over the solar cycle. These source regions are discussed in the context of recent theoretical models (based on Alfven waves and MHD turbulence) that have begun to successfully predict both the heating and acceleration in fast and slow wind regions with essentially no free parameters. Some new results regarding these models - including a quantitative prediction of the lower density and temperature at 1 AU seen during the present solar minimum in comparison to the prior minimum - are also shown.
Transient collimated plasma eruptions in the solar corona, commonly known as coronal (or X-ray) jets, are among the most interesting manifestations of solar activity. It has been suggested that these events contribute to the mass and energy content o f the corona and solar wind, but the extent of these contributions remains uncertain. We have recently modeled the formation and evolution of coronal jets using a three-dimensional (3D) magnetohydrodynamic (MHD) code with thermodynamics in a large spherical domain that includes the solar wind. Our model is coupled to 3D MHD flux-emergence simulations, i.e, we use boundary conditions provided by such simulations to drive a time-dependent coronal evolution. The model includes parametric coronal heating, radiative losses, and thermal conduction, which enables us to simulate the dynamics and plasma properties of coronal jets in a more realistic manner than done so far. Here we employ these simulations to calculate the amount of mass and energy transported by coronal jets into the outer corona and inner heliosphere. Based on observed jet-occurrence rates, we then estimate the total contribution of coronal jets to the mass and energy content of the solar wind to (0.4-3.0) % and (0.3-1.0) %, respectively. Our results are largely consistent with the few previous rough estimates obtained from observations, supporting the conjecture that coronal jets provide only a small amount of mass and energy to the solar wind. We emphasize, however, that more advanced observations and simulations are needed to substantiate this conjecture.
In this paper we study the effects of hemispheric imbalance of magnetic helicity density on breaking the equatorial reflection symmetry of the dynamo generated large-scale magnetic field. Our study employs the axisymmetric dynamo model which takes in to account the nonlinear effect of magnetic helicity conservation. We find that the evolution of the net magnetic helicity density, in other words, the magnetic helicity imbalance, on the surface follows the evolution of the parity of the large-scale magnetic field. Random fluctuations of the $alpha$-effect and the helicity fluxes can inverse the causal relationship, i.e., the magnetic helicity imbalance or the imbalance of magnetic helicity fluxes can drive the magnetic parity breaking. We also found that evolution of the net magnetic helicity of the small-scale fields follows the evolution of the net magnetic helicity of the large-scale fields with some time lag. We interpret this as an effect of the difference of the magnetic helicity fluxes out of the Sun from the large and small scales.
As the solar wind propagates through the heliosphere, dynamical processes irreversibly erase the signatures of the near-Sun heating and acceleration processes. The elemental fractionation of the solar wind should not change during transit however, ma king it an ideal tracer of these processes. We aimed to verify directly if the solar wind elemental fractionation is reflective of the coronal source region fractionation, both within and across different solar wind source regions. A backmapping scheme was used to predict where solar wind measured by the Advanced Composition Explorer (ACE) originated in the corona. The coronal composition measured by the Hinode Extreme ultraviolet Imaging Spectrometer (EIS) at the source regions was then compared with the in-situ solar wind composition. On hourly timescales there was no apparent correlation between coronal and solar wind composition. In contrast, the distribution of fractionation values within individual source regions was similar in both the corona and solar wind, but distributions between different sources have significant overlap. The matching distributions directly verifies that elemental composition is conserved as the plasma travels from the corona to the solar wind, further validating it as a tracer of heating and acceleration processes. The overlap of fractionation values between sources means it is not possible to identify solar wind source regions solely by comparing solar wind and coronal composition measurements, but a comparison can be used to verify consistency with predicted spacecraft-corona connections.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا