ترغب بنشر مسار تعليمي؟ اضغط هنا

Clarke subgradients for directionally Lipschitzian stratifiable functions

105   0   0.0 ( 0 )
 نشر من قبل Dmitriy Drusvyatskiy
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using a geometric argument, we show that under a reasonable continuity condition, the Clarke subdifferential of a semi-algebraic (or more generally stratifiable) directionally Lipschitzian function admits a simple form: the normal cone to the domain and limits of gradients generate the entire Clarke subdifferential. The characterization formula we obtain unifies various apparently disparate results that have appeared in the literature. Our techniques also yield a simplified proof that closed semialgebraic functions on $R^n$ have a limiting subdifferential graph of uniform local dimension $n$.

قيم البحث

اقرأ أيضاً

We establish the following result: if the graph of a (nonsmooth) real-extended-valued function $f:mathbb{R}^{n}to mathbb{R}cup{+infty}$ is closed and admits a Whitney stratification, then the norm of the gradient of $f$ at $xin{dom}f$ relative to the stratum containing $x$ bounds from below all norms of Clarke subgradients of $f$ at $x$. As a consequence, we obtain some Morse-Sard type theorems as well as a nonsmooth Kurdyka-L ojasiewicz inequality for functions definable in an arbitrary o-minimal structure.
85 - Taras Banakh 2008
We introduce and study (metrically) quarter-stratifiable spaces and then apply them to generalize Rudin and Kuratowski-Montgomery theorems about the Baire and Borel complexity of separately continuous functions.
A novel derivative-free algorithm, optimization by moving ridge functions (OMoRF), for unconstrained and bound-constrained optimization is presented. This algorithm couples trust region methodologies with output-based dimension reduction to accelerat e convergence of model-based optimization strategies. The dimension-reducing subspace is updated as the trust region moves through the function domain, allowing OMoRF to be applied to functions with no known global low-dimensional structure. Furthermore, its low computational requirement allows it to make rapid progress when optimizing high-dimensional functions. Its performance is examined on a set of test problems of moderate to high dimension and a high-dimensional design optimization problem. The results show that OMoRF compares favourably to other common derivative-free optimization methods, even for functions in which no underlying global low-dimensional structure is known.
We propose a sampling-based approach to learn Lyapunov functions for a class of discrete-time autonomous hybrid systems that admit a mixed-integer representation. Such systems include autonomous piecewise affine systems, closed-loop dynamics of linea r systems with model predictive controllers, piecewise affine/linear complementarity/mixed-logical dynamical system in feedback with a ReLU neural network controller, etc. The proposed method comprises an alternation between a learner and a verifier to find a valid Lyapunov function inside a convex set of Lyapunov function candidates. In each iteration, the learner uses a collection of state samples to select a Lyapunov function candidate through a convex program in the parameter space. The verifier then solves a mixed-integer quadratic program in the state space to either validate the proposed Lyapunov function candidate or reject it with a counterexample, i.e., a state where the Lyapunov condition fails. This counterexample is then added to the sample set of the learner to refine the set of Lyapunov function candidates. By designing the learner and the verifier according to the analytic center cutting-plane method from convex optimization, we show that when the set of Lyapunov functions is full-dimensional in the parameter space, our method finds a Lyapunov function in a finite number of steps. We demonstrate our stability analysis method on closed-loop MPC dynamical systems and a ReLU neural network controlled PWA system.
Convexification based on convex envelopes is ubiquitous in the non-linear optimization literature. Thanks to considerable efforts of the optimization community for decades, we are able to compute the convex envelopes of a considerable number of funct ions that appear in practice, and thus obtain tight and tractable approximations to challenging problems. We contribute to this line of work by considering a family of functions that, to the best of our knowledge, has not been considered before in the literature. We call this family ray-concave functions. We show sufficient conditions that allow us to easily compute closed-form expressions for the convex envelope of ray-concave functions over arbitrary polytopes. With these tools, we are able to provide new perspectives to previously known convex envelopes and derive a previously unknown convex envelope for a function that arises in probability contexts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا