ﻻ يوجد ملخص باللغة العربية
We have systematically investigated and compared different methods to induce superconductivity in iron chalcogenide Fe1+yTe0.6Se0.4 including annealing in vacuum, N2, O2, I2 atmosphere, and immersing samples into acid and alcoholic beverages. Vacuum and N2 annealing are proved to be ineffective to induce superconductivity in Fe1+yTe0.6Se0.4 single crystal. O2 and I2 annealing, acid and alcoholic beverages can induce superconductivity by oxidizing the excess Fe in the sample. Superconductivity in O2 annealed sample is in bulk nature, while I2, acid and alcoholic beverages can only induce superconductivity near the surface. By comparing different effects of O2, I2, acid and alcoholic beverages, we propose a scenario to explain how the superconductivity is induced in the non-superconducting as-grown Fe1+yTe0.6Se0.4.
Effects of iodine annealing to induce bulk superconductivity in Fe1+yTe0.6Se0.4 have been systematically studied by changing the molar ratio of iodine to the sample and annealing temperature. The optimal condition to induce bulk superconductivity wit
Superconductivity in anti-PbO-type iron chalcogenides Fe1-xTe1-ySey (x = 0, 0.1, y = 0.1 0.4) depends on the amount (x) of interstitial iron atoms located between the FeTe1-ySey layers. Non-superconducting samples of nominal Fe1.1Te1-ySey convert to
Experimental evidences from transport, magnetic, and magneto-optical (MO) image measurements confirmed that arsenic (As) vapor annealing was another effective way to induce bulk superconductivity with isotropic, large, and homogenous superconducting
We have investigated uniaxial and hydrostatic pressure effects on superconductivity in Fe1.07Te0.88S0.12 through magnetic-susceptibility measurements down to 1.8 K. The superconducting transition temperature Tc is enhanced by out-of-plane pressure (u
We report the temperature dependence of the resistivity and thermoelectric power under hydrostatic pressure of the itinerant antiferromagnet BaFe2As2 and the electron-doped superconductor Ba(Fe0.9Co0.1)2As2. We observe a hole-like contribution to the