ترغب بنشر مسار تعليمي؟ اضغط هنا

Predictions for p+Pb at 5.02A TeV to test initial state nuclear shadowing at the Large Hadron Collider

70   0   0.0 ( 0 )
 نشر من قبل Vasile Topor Pop N
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Collinear factorized perturbative quantum chromodynamics (pQCD) model predictions are compared for $p+{rm Pb}$ at 5.02$A$ TeV to test nuclear shadowing of parton distribution at the Large Hadron Collider (LHC). The pseudorapidity distribution the nuclear modification factor (NMF), $R_{p{rm Pb}}(y=0,p_T<20;{rm GeV}/{it c}) = dn_{p{rm Pb}} /(N_{rm coll}(b)dn_{pp})$ and the pseudorapidity asymmetry $Y_{asym}^{h}(p_T)=R^h_{pPb}(p_T, eta<0)/R^h_{pPb}(p_T,eta>0)$ are computed using {small HIJING/B=B v2.0 model} and a pQCD improved parton model kTpQCD_v2.0 which embedded generalized parton distribution functions (PDFs). These results are updated calculations of those presented in Phys. Rev. C {bf 85}, 024903 (2012).

قيم البحث

اقرأ أيضاً

117 - G. G. Barnafoldi 2011
Collinear factorized perturbative QCD model predictions are compared for p+Pb at 4.4A TeV to test nuclear shadowing of parton distribution at the Large Hadron Collider (LHC). The nuclear modification factor (NMF), R_{pPb}(y=0,p_T<20 GeV/c) = dn_{p Pb } /(N_{coll}(b)dn_{pp}), is computed with electron-nucleus (e+A) global fit with different nuclear shadow distributions and compared to fixed Q^2 shadow ansatz used in Monte Carlo Heavy Ion Jet Interacting Generator (HIJING) type models. Due to rapid DGLAP reduction of shadowing with increasing Q^2 used in e+A global fit, our results confirm that no significant initial state suppression is expected (R_{pPb} (p_T) = 1 pm 0.1) in the p_T range 5 to 20 GeV/ c. In contrast, the fixed Q^2 shadowing models assumed in HIJING type models predict in the above p_T range a sizable suppression, R_{pPb} (p_T) = 0.6-0.7 at mid-pseudorapidity that is similar to the color glass condensate (CGC) model predictions. For central (N_{coll} = 12) p+ Pb collisions and at forward pseudorapidity (eta = 6) the HIJING type models predict smaller values of nuclear modification factors (R_{pPb}(p_T)) than in minimum bias events at mid-pseudorapidity (eta = 0). Observation of R_{pPb}(p_T= 5-20 GeV/c) less than 0.6 for minimum bias p+A collisions would pose a serious difficulty for separating initial from final state interactions in Pb+Pb collisions at LHC energies.
230 - V. Topor Pop 2013
Effects of strong longitudinal colour electric fields (SCF), shadowing, and quenching on the open prompt charm mesons (D$^0$, D$^+$, D$^{*+}$, D${_s}{^+}$) production in central Pb + Pb collisions at $sqrt{s_{rm NN}}$ = 2.76 TeV are investigated with in the framework of the {small HIJING/B=B v2.0} model. We compute the nuclear modification factor $R_{rm PbPb}^{rm D}$, and show that the above nuclear effects constitute important dynamical mechanisms in the description of experimental data. The strength of colour fields (as characterized by the string tension $kappa$), partonic energy loss and jet quenching process lead to a suppression factor consistent with recent published data. Predictions for future beauty mesons measurements have been included. Ratios of strange to non-strange prompt charm mesons in central Pb + Pb and minimum bias (MB) $ p + p$ collisions at 2.76 TeV are also discussed. Minimum bias $p + p$ collisions which constitute theoretical baseline in our calculations are studied at the centre of mass energies $sqrt{s}$ = 2.76 TeV and 7 TeV.
We study charm production in Pb+Pb collisions at $sqrt{s_{rm NN}}=$2.76 TeV in the Parton-Hadron-String-Dynamics transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucle on-nucleon collisions by using the PYTHIA event generator taking into account the (anti-)shadowing incorporated in the EPS09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into $D$ mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable $R_{rm AA}$ and elliptic flow of $D$ mesons in comparison to the experimental data for Pb+Pb collisions at $sqrt{s_{NN}}$ = 2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm quarks in relativistic heavy-ion collisions. We find that the scattering cross sections are only moderately affected by off-shell charm degrees of freedom. However, the position of the peak of $R_{rm AA}$ for $D$ mesons depends on the strength of the scalar partonic forces which also have an impact on the $D$ meson elliptic flow. The comparison with experimental data on the $R_{rm AA}$ suggests that the repulsive force is weaker for off-shell charm quarks as compared to that for light quarks. Furthermore, the effects from radiative charm energy loss appear to be low compared to the collisional energy loss up to transverse momenta of $sim$ 15 GeV/c.
Partonic matter produced in the early stage of ultrarelativistic nucleus-nucleus collisions is assumed to be composed mainly of gluons, and quarks and antiquarks are produced at later times. To study the implications of such a scenario, the dynamical evolution of a chemically nonequilibrated system is described by the ideal (2+1)-dimensional hydrodynamics with a time dependent (anti)quark fugacity. The equation of state interpolates linearly between the lattice data for the pure gluonic matter and the lattice data for the chemically equilibrated quark-gluon plasma. The spectra and elliptic flows of thermal dileptons and photons are calculated for central Pb+Pb collisions at the CERN Large Hadron Collider energy of $sqrt{s_{_{rm NN}}} = 2.76$ TeV. We test the sensitivity of the results to the choice of equilibration times, including also the case where the complete chemical equilibrium of partons is reached already at the initial stage. It is shown that a suppression of quarks at early times leads to a significant reduction of the yield of the thermal dileptons, but only to a rather modest suppression of the $p_T$-distribution of direct photons. It is demonstrated that an enhancement of photon and dilepton elliptic flows might serve as a promising signature of the pure-glue initial state.
The Large Hadron electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy recovery technology, it collides a novel, intense electron beam wit h a proton or ion beam from the High Luminosity--Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operation. This report represents an update of the Conceptual Design Report (CDR) of the LHeC, published in 2012. It comprises new results on parton structure of the proton and heavier nuclei, QCD dynamics, electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics in extending the accessible kinematic range in lepton-nucleus scattering by several orders of magnitude. Due to enhanced luminosity, large energy and the cleanliness of the hadronic final states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, the report represents a detailed updated design of the energy recovery electron linac (ERL) including new lattice, magnet, superconducting radio frequency technology and further components. Challenges of energy recovery are described and the lower energy, high current, 3-turn ERL facility, PERLE at Orsay, is presented which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution and calibration goals which arise from the Higgs and parton density function physics programmes. The paper also presents novel results on the Future Circular Collider in electron-hadron mode, FCC-eh, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا