ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct MD simulation of liquid-solid phase equilibria for three-component plasma

209   0   0.0 ( 0 )
 نشر من قبل Joseph Hughto
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The neutron rich isotope 22Ne may be a significant impurity in carbon and oxygen white dwarfs and could impact how the stars freeze. We perform molecular dynamics simulations to determine the influence of 22Ne in carbon-oxygen-neon systems on liquid-solid phase equilibria. Both liquid and solid phases are present simultaneously in our simulation volumes. We identify liquid, solid, and interface regions in our simulations using a bond angle metric. In general we find good agreement for the composition of liquid and solid phases between our MD simulations and the semi analytic model of Medin and Cumming. The trace presence of a third component, neon, does not appear to strongly impact the chemical separation found previously for two component carbon and oxygen systems. This suggests that small amounts of 22Ne may not qualitatively change how the material in white dwarf stars freezes. However, we do find systematically lower melting temperatures (higher Gamma) in our MD simulations compared to the semi analytic model. This difference seems to grow with impurity parameter Q_imp and suggests a problem with simple corrections to the linear mixing rule for the free energy of multicomponent solid mixtures that is used in the semi analytic model.

قيم البحث

اقرأ أيضاً

We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase MD simulations. We identified liquid, solid, and interface regions using a bond angle metric. To study finite size effects, we perform 2 7648 and 55296 ion simulations. To help monitor non-equilibrium effects, we calculate diffusion constants $D_i$. For the carbon-oxygen system we find that $D_O$ for oxygen ions in the solid is much smaller than $D_C$ for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite size and non-equilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominately selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.
131 - D. Tsiklauri 2012
The process of particle acceleration by left-hand, circularly polarised inertial Alfven waves (IAW) in a transversely inhomogeneous plasma is studied using 3D particle-in-cell simulation. A cylindrical tube with, transverse to the background magnetic field, inhomogeneity scale of the order of ion inertial length is considered on which IAWs with frequency $0.3 omega_{ci}$ are launched that are allowed to develop three wavelength. As a result time-varying parallel electric fields are generated in the density gradient regions which accelerate electrons in the parallel to magnetic field direction. Driven perpendicular electric field of IAWs also heats ions in the transverse direction. Such numerical setup is relevant for solar flaring loops and earth auroral zone. This first, 3D, fully-kinetic simulation demonstrates electron acceleration efficiency in the density inhomogeneity regions, along the magnetic field, of the order of 45% and ion heating, in the transverse to the magnetic field direction, of 75%. The latter is a factor of two times higher than the previous 2.5D analogous study and is in accordance with solar flare particle acceleration observations. We find that the generated parallel electric field is localised in the density inhomogeneity region and rotates in the same direction and with the same angular frequency as the initially launched IAW. Our numerical simulations seem also to suggest that the knee often found in the solar flare electron spectra can alternatively be interpreted as the Landau damping (Cerenkov resonance effect) of IAWs due to the wave-particle interactions.
We present the results of three-dimensional kinetic particle-in-cell (PIC) simulations of isotropic periodic relativistically magnetized pair-plasma equilibria known as the ABC fields. We performed several simulations for initial wavenumbers k_ini = 2 or k_ini = 4, different efficiencies of radiative cooling (including radiation reaction from synchrotron and inverse Compton processes), and different mean magnetization values. These equilibria evolve by means of ideal coalescence instability, the saturation of which generates ab initio localized kinetically-thin current layers -- sites of magnetic reconnection and non-thermal particle acceleration -- eventually relaxing to a state of lower magnetic energy at conserved total magnetic helicity. We demonstrate that magnetic relaxation involves in addition localized collapses of magnetic minima and bulk mergers of current layer pairs, which represents a novel scenario of spontaneous magnetic dissipation with application to the rapid gamma-ray flares of blazars and of the Crab Nebula. Particle acceleration under strong radiative losses leads to formation of power-law indices N(gamma) ~ gamma^(-p) up to p ~= -2.3 at mean hot magnetization values of <sigma_hot> ~ 6. Individual energetic particles can be accelerated within one light-crossing time by electric fields that are largely perpendicular to the local magnetic fields. The energetic particles are highly anisotropic due to the kinetic beaming effect, implying complex patterns of rapid variability. A significant fraction of the initial total energy can be radiated away in the overall process of magnetoluminescence.
Latest study reports that plasma emission can be generated by energetic electrons of DGH distribution via the electron cyclotron maser instability (ECMI) in plasmas characterized by a large ratio of plasma oscillation frequency to electron gyro-frequ ency ($omega_{pe}/Omega_{ce}$). In this study, on the basis of the ECMI-plasma emission mechanism, we examine the double plasma resonance (DPR) effect and the corresponding plasma emission at both harmonic (H) and fundamental (F) bands using PIC simulations with various $omega_{pe}/Omega_{ce}$. This allows us to directly simulate the feature of zebra pattern (ZP) observed in solar radio bursts for the first time. We find that (1) the simulations reproduce the DPR effect nicely for the upper hybrid (UH) and Z modes, as seen from their variation of intensity and linear growth rate with $omega_{pe}/Omega_{ce}$, (2) the intensity of the H emission is stronger than that of the F emission by $sim$ 2 orders of magnitude and vary periodically with increasing $omega_{pe}/Omega_{ce}$, while the F emission is too weak to be significant, therefore we suggest that it is the H emission accounting for solar ZPs, (3) the peak-valley contrast of the total intensity of H is $sim 4$, and the peak lies around integer values of $omega_{pe}/Omega_{ce}$ (= 10 and 11) for the present parameter setup. We also evaluate the effect of energy of energetic electrons on the characteristics of ECMI-excited waves and plasma radiation. The study provides novel insight on the physical origin of ZPs of solar radio bursts.
Particle acceleration in collisionless plasma systems is a central question in astroplasma and astroparticle physics. The structure of the acceleration regions, electron-ion energy equilibration, preacceleration of particles at shocks to permit furth er energization by diffusive shock acceleration, require knowledge of the distribution function of particles besides the structure and dynamic of electromagnetic fields, and hence a kinetic description is desirable. Particle-in-cell simulations offer an appropriate, if computationally expensive method of essentially conducting numerical experiments that explore kinetic phenomena in collisionless plasma. We review recent results of PIC simulations of astrophysical plasma systems, particle acceleration, and the instabilities that shape them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا