ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous magnetic phase transition in half-frustrated Ca2Os2O7

51   0   0.0 ( 0 )
 نشر من قبل Ping Zheng
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the specific heat, magnetization, optical spectroscopy measurements and the firstprinciple calculations on the Weberite structure Ca2Os2O7 single crystal/polycrystalline sample. The Ca2Os2O7 shows a Curie-Weiss nature at high temperature and goes into a ferrimagnetic insulating state at 327 K on cooling. A lambda-like peak is observed at 327 K in the specific heat implying a second-order phase transition. The vanishing electronic specific heat at low temperature suggests a full energy gap. At high temperature above the transition, small amount of itinerant carriers with short life time tau are observed, which is gapped at 20 K with a direct gap of 0:24 eV . Our first principle calculations indicate that the anti-ferromagnetic (AFM) correlation with intermediate Coulomb repulsion U could effectively split Os(4b) t2g bands and push them away from Fermi level(EF). On the other hand, a non-collinear magnetic interaction is needed to push the Os(4c) bands away from EF, which could be induced by Os(4c)-Os(4c) frustration. Therefore, AFM correlation, Coulomb repulsion U and non-collinear interaction all play important roles for the insulating ground state in Ca2Os2O7.

قيم البحث

اقرأ أيضاً

We study the formation of magnetic clusters in frustrated magnets in their cooperative paramagnetic regime. For this purpose, we consider the $J_1$-$J_2$-$J_3$ classical Heisenberg model on kagome and pyrochlore lattices with $J_2 = J_3=J$. In the ab sence of farther-neighbor couplings, $J=0$, the system is in the Coulomb phase with magnetic correlations well characterized by pinch-point singularities. Farther-neighbor couplings lead to the formation of magnetic clusters, which can be interpreted as a counterpart of topological-charge clusters in Ising frustrated magnets [T. Mizoguchi, L. D. C. Jaubert and M. Udagawa, Phys. Rev. Lett. {bf 119}, 077207 (2017)]. The concomitant static and dynamical magnetic structure factors, respectively $mathcal{S}({bm{q}})$ and $mathcal{S}({bm{q}},omega)$, develop half-moon patterns. As $J$ increases, the continuous nature of the Heisenberg spins enables the half-moons to coalesce into connected `star structures spreading across multiple Brillouin zones. These characteristic patterns are a dispersive complement of the pinch point singularities, and signal the proximity to a Coulomb phase. Shadows of the pinch points remain visible at finite energy, $omega$. This opens the way to observe these clusters through (in)elastic neutron scattering experiments. The origin of these features are clarified by complementary methods: large-$N$ calculations, semi-classical dynamics of the Landau-Lifshitz equation, and Monte Carlo simulations. As promising candidates to observe the clustering states, we revisit the origin of spin molecules observed in a family of spinel oxides $AB_2$O$_4$ ($A=$ Zn, Hg, Mg, $B=$ Cr, Fe).
113 - G. Quirion , X. Han , M.L. Plumer 2006
By means of high-resolution ultrasonic velocity measurements, as a function of temperature and magnetic field, the nature of the different low temperatures magnetic phase transitions observed for the quasi-one-dimensional compound CsNiCl3 is establis hed. Special attention has been devoted to the field-induced 120 degree phase transition above the multicritical point in the H-T phase diagram where the elastic constant C44 reveals a step-like variation and hysteresis effects. These results represent the first experimental evidence that the 120 degree phase transition is weakly first order and contradict the popular notion of new universality classes for chiral systems.
Critical behavior is very common in many fields of science and a wide variety of many-body systems exhibit emergent critical phenomena. The beauty of critical phase transitions lies in their scale-free properties, such that the temperature dependence of physical parameters of systems differing at the microscopic scale can be described by the same generic power laws. In this work we establish the critical properties of the antiferromagnetic phase transition in artificial square ice, showing that it belongs to the two-dimensional Ising universality class, which extends the applicability of such concepts from atomistic to mesoscopic magnets. Combining soft x-ray resonant magnetic scattering experiments and Monte Carlo simulations, we characterize the transition to the low temperature long range order expected for the artificial square ice system. By measuring the critical scattering, we provide direct quantitative evidence of a continuous magnetic phase transition, obtaining critical exponents which are compatible with those of the two-dimensional Ising universality class. In addition, by varying the blocking temperature relative to the phase transition temperature, we demonstrate its influence on the out-of-equilibrium dynamics due to critical slowing down at the phase transition.
217 - Y. Tokiwa , T. Radu , R. Coldea 2006
We report magnetization and specific heat measurements in the 2D frustrated spin-1/2 Heisenberg antiferromagnet Cs2CuCl4 at temperatures down to 0.05 K and high magnetic fields up to 11.5 T applied along a, b and c-axes. The low-field susceptibility chi (T) M/B shows a broad maximum around 2.8 K characteristic of short-range antiferromagnetic correlations and the overall temperature dependence is well described by high temperature series expansion calculations for the partially frustrated triangular lattice with J=4.46 K and J/J=1/3. At much lower temperatures (< 0.4 K) and in in-plane field (along b and c-axes) several new intermediate-field ordered phases are observed in-between the low-field incommensurate spiral and the high-field saturated ferromagnetic state. The ground state energy extracted from the magnetization curve shows strong zero-point quantum fluctuations in the ground state at low and intermediate fields.
Ultrasound velocity measurements were performed on a single crystal of spin-frustrated ferrite spinel ZnFe$_2$O$_4$ from 300 K down to 2 K. In this cubic crystal, all the symmetrically-independent elastic moduli exhibit softening with a characteristi c minimum with decreasing temperature below $sim$100 K. This elastic anomaly suggests a coupling between dynamical lattice deformations and molecular-spin excitations. In contrast, the elastic anomalies, normally driven by the magnetostructural phase transition and its precursor, are absent in ZnFe$_2$O$_4$, suggesting that the spin-lattice coupling cannot play a role in relieving frustration within this compound. The present study infers that, for ZnFe$_2$O$_4$, the dynamical molecular-spin state evolves at low temperatures without undergoing precursor spin-lattice fluctuations and spin-lattice ordering. It is expected that ZnFe$_2$O$_4$ provides the unique dynamical spin-lattice liquid-like system, where not only the spin molecules but also the cubic lattice fluctuate spatially and temporally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا