ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact Mapping Noisy van der Pol Type Oscillator onto Quasi-symplectic Dynamics

175   0   0.0 ( 0 )
 نشر من قبل Ruoshi Yuan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find exact mappings for a class of limit cycle systems with noise onto quasi-symplectic dynamics, including a van der Pol type oscillator. A dual role potential function is obtained as a component of the quasi-symplectic dynamics. Based on a stochastic interpretation different from the traditional Itos and Stratonovichs, we show the corresponding steady state distribution is the familiar Boltzmann-Gibbs type for arbitrary noise strength. The result provides a new angle for understanding processes without detailed balance and can be verified by experiments.



قيم البحث

اقرأ أيضاً

We propose to compute the effective activation energy, usually referred to a pseudopotential or quasipotential, of a birhythmic system -- a van der Pol like oscillator -- in the presence of correlated noise. It is demonstrated, with analytical techni ques and numerical simulations, that the correlated noise can be taken into account and one can retrieve the low noise rate of the escapes. We thus conclude that a pseudopotential, or an effective activation energy, is a realistic description for the stability of birhythmic attractors also in the presence of correlated noise.
Classical dynamical systems close to a critical point are known to act as efficient sensors due to a strongly nonlinear response. We explore such systems in the quantum regime by modeling a quantum version of a driven van der Pol oscillator. We find the classical response survives down to one excitation quantum. At very weak drives, genuine quantum features arise, including diverging and negative susceptibilities. Further, the linear response is greatly enhanced by using a strong incoherent pump. These results are largely generic and can be probed in current experimental platforms suited for quantum sensing.
The equation of the Van der Pol oscillator, being characterized by a dissipative term, is non-Lagrangian. Appending an additional degree of freedom we bring the equation in the frame of action principle and thus introduce a one-way coupled system. As with the Van der Pol oscillator, the coupled system also involves only one parameter that controls the dynamics. The response system is described by a linear differential equation coupled nonlinearly to the drive system. In the linear approximation the equations of our coupled system coincide with those of the Bateman dual system (a pair of damped and anti-damped harmonic oscillators). The critical point of damped and anti-damped oscillators are stable and unstable for all physical values of the frictional coefficient $mu$. Contrarily, the critical points of the drive- (Van der Pol) and response systems depend crucially on the values of $mu$. These points are unstable for $mu > 0$ while the critical point of the drive system is stable and that of the response system is unstable for $mu < 0$. The one-way coupled system exhibits bifurcations which are different from those of the uncoupled Van der Pol oscillator. Our system is chaotic and we observe phase synchronization in the regime of dynamic chaos only for small values of $mu$.
The collective and purely relaxational dynamics of quantum many-body systems after a quench at temperature $T=0$, from a disordered state to various phases is studied through the exact solution of the quantum Langevin equation of the spherical and th e $O(n)$-model in the limit $ntoinfty$. The stationary state of the quantum dynamics is shown to be a non-equilibrium state. The quantum spherical and the quantum $O(n)$-model for $ntoinfty$ are in the same dynamical universality class. The long-time behaviour of single-time and two-time correlation and response functions is analysed and the universal exponents which characterise quantum coarsening and quantum ageing are derived. The importance of the non-Markovian long-time memory of the quantum noise is elucidated by comparing it with an effective Markovian noise having the same scaling behaviour and with the case of non-equilibrium classical dynamics.
A procedure to characterize chaotic dynamical systems with concepts of complex networks is pursued, in which a dynamical system is mapped onto a network. The nodes represent the regions of space visited by the system, while edges represent the transi tions between these regions. Parameters used to quantify the properties of complex networks, including those related to higher order neighborhoods, are used in the analysis. The methodology is tested for the logistic map, focusing the onset of chaos and chaotic regimes. It is found that the corresponding networks show distinct features, which are associated to the particular type of dynamics that have generated them.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا