ﻻ يوجد ملخص باللغة العربية
We investigate the effect of the anisotropy and of the directional pinning in YBa$_2$Cu$_3$O$_{7-x}$ films grown by pulsed laser ablation from targets containing BaZrO$_3$ at 5% mol. BaZrO$_3$ inclusions self-assemble to give nanorods oriented along the c-axis, thus giving a preferential direction for vortex pinning. The directionality of vortex response is studied at high ac frequency with the complex microwave response at 48 GHz, as a function of the applied field and of the angle $theta$ between the field and the c-axis. The complex microwave response does not exhibit any angular scaling, suggesting that the structural anisotropy of YBa$_2$Cu$_3$O$_{7-x}$ is supplemented by at least another preferred orientation. The pinning parameter $r$ shows evidence of directional pinning, effective in a wide range of angles around the c-axis (thus ascribed to BZO nanocolumns).
We present a microwave study of the angular dependence of the flux-flow resistivity $rho_{ff}$ and of the pinning constant $k_p$ in YBCO thin films containing BZO nanorods. We find that BZO nanorods are very efficient pinning centers, even in tilted
We observe a strong reduction of the field induced thin film surface resistance measured at high microwave frequency ($ u=$47.7 GHz) in YBa$_{2}$Cu$_{3}$O$_{7-delta}$ thin films grown on SrTiO$_3$ substrates, as a consequence of the introduction of s
Current-voltage $I-V$ curves have been carefully measured for YBa$_2$Cu$_3$O$_{7-delta}$ thin films by following different thermal or field annealing procedures. Although all data can be described quite well by the vortex-glass theory, it is found th
Most measurements of critical current densities in YBa$_2$Cu$_3$O$_{7-delta}$ thin films to date have been performed on films where the textit{c}-axis is grown normal to the film surface. With such films, the analysis of the dependence of $j_c$ on th
YBa$_2$Cu$_3$O$_{7-delta}$ is a good candidate to systematically study high-temperature superconductivity by nanoengineering using advanced epitaxy. An essential prerequisite for these studies are coherently strained YBa$_2$Cu$_3$O$_{7-delta}$ thin f