ﻻ يوجد ملخص باللغة العربية
We propose the concept of adaptable processes as a way of overcoming the limitations that process calculi have for describing patterns of dynamic process evolution. Such patterns rely on direct ways of controlling the behavior and location of running processes, and so they are at the heart of the adaptation capabilities present in many modern concurrent systems. Adaptable processes have a location and are sensible to actions of dynamic update at runtime; this allows to express a wide range of evolvability patterns for concurrent processes. We introduce a core calculus of adaptable processes and propose two verification problems for them: bounded and eventual adaptation. While the former ensures that the number of consecutive erroneous states that can be traversed during a computation is bound by some given number k, the latter ensures that if the system enters into a state with errors then a state without errors will be eventually reached. We study the (un)decidability of these two problems in several variants of the calculus, which result from considering dynamic and static topologies of adaptable processes as well as different evolvability patterns. Rather than a specification language, our calculus intends to be a basis for investigating the fundamental properties of evolvable processes and for developing richer languages with evolvability capabilities.
Classical Processes (CP) is a calculus where the proof theory of classical linear logic types communicating processes with mobile channels, a la pi-calculus. Its construction builds on a recent propositions as types correspondence between session typ
We show that the techniques for resource control that have been developed in the so-called light logics can be fruitfully applied also to process algebras. In particular, we present a restriction of Higher-Order pi-calculus inspired by Soft Linear Lo
Besides respecting prescribed protocols, communication-centric systems should never get stuck. This requirement has been expressed by liveness properties such as progress or (dead)lock freedom. Several typing disciplines that ensure these properties
There exists a rich literature of rule formats guaranteeing different algebraic properties for formalisms with a Structural Operational Semantics. Moreover, there exist a few approaches for automatically deriving axiomatizations characterizing strong
The lambda-calculus with de Bruijn indices assembles each alpha-class of lambda-terms in a unique term, using indices instead of variable names. Intersection types provide finitary type polymorphism and can characterise normalisable lambda-terms thro