ﻻ يوجد ملخص باللغة العربية
The dual to a tetrahedron consists of a single vertex at which four edges and six faces are incident. Along each edge, three faces converge. A 2-foam is a compact topological space such that each point has a neighborhood homeomorphic to a neighborhood of that complex. Knotted foams in 4-dimensional space are to knotted surfaces, as knotted trivalent graphs are to classical knots. The diagram of a knotted foam consists of a generic projection into 4-space with crossing information indicated via a broken surface. In this paper, a finite set of moves to foams are presented that are analogous to the Reidemeister-type moves for knotted graphs. These moves include the Roseman moves for knotted surfaces. Given a pair of diagrams of isotopic knotted foams there is a finite sequence of moves taken from this set that, when applied to one diagram sequentially, produces the other diagram.
We prove that any diagram of the unknot with c crossings may be reduced to the trivial diagram using at most (236 c)^{11} Reidemeister moves. Moreover, every diagram in this sequence has at most (7 c)^2 crossings. We also prove a similar theorem for
We study the number of Reidemeister type III moves using Fox n-colorings of knot diagrams.
Dabkowski and Sahi defined an invariant of a link in the $3$-sphere, which is preserved under $4$-moves. This invariant is a quotient of the fundamental group of the complement of the link. It is generally difficult to distinguish the Dabkowski-Sahi
It has been conjectured that every $(2+1)$-TQFT is a Chern-Simons-Witten (CSW) theory labelled by a pair $(G,lambda)$, where $G$ is a compact Lie group, and $lambda in H^4(BG;Z)$ a cohomology class. We study two TQFTs constructed from Jones subfactor
It is one of the most important facts in 4-dimensional topology that not every spherical homology class of a 4-manifold can be represented by an embedded sphere. In 1978, M. Freedman and R. Kirby showed that in the simply connected case, many of the