ترغب بنشر مسار تعليمي؟ اضغط هنا

A Detailed Spatiokinematic Model of the Conical Outflow of the Multipolar Planetary Nebula, NGC 7026

166   0   0.0 ( 0 )
 نشر من قبل David Clark
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an extensive, long-slit, high-resolution coverage of the complex planetary nebula (PN), NGC 7026. We acquired ten spectra using the Manchester Echelle Spectrometer at San Pedro Martir Observatory in Baja California, Mexico, and each shows exquisite detail, revealing the intricate structure of this object. Incorporating these spectra into the 3-dimensional visualization and kinematic program, SHAPE, and using HST images of NGC 7026, we have produced a detailed structural and kinematic model of this PN. NGC 7026 exhibits remarkable symmetry consisting of three lobe-pairs and four sets of knots, all symmetrical about the nucleus and displaying a conical outflow. Comparing the 3-D structure of this nebula to recent, XMM-Newton X-ray observations, we investigate the extended X-ray emission in relation to the nebular structure. We find that the X-ray emission, while confined to the closed, northern lobes of this PN, shows an abrupt termination in the middle of the SE lobe, which our long slit data shows to be open. This is where the shocked, fast wind seems to be escaping the interior of the nebula and the X-ray emission rapidly cools in this region.



قيم البحث

اقرأ أيضاً

High-resolution HST imaging of the compact planetary nebula NGC 6644 has revealed two pairs of bipolar lobes and a central ring lying close to the plane of the sky. From mid-infrared imaging obtained with the Gemini Telescope, we have found a dust to rus which is oriented nearly perpendicular to one pair of the lobes. We suggest that NGC 6644 is a multipolar nebula and have constructed a 3-D model which allows the visualization of the object from different lines of sight. These results suggest that NGC 6644 may have similar intrinsic structures as other multipolar nebulae and the phenomenon of multipolar nebulosity may be more common than previously believed.
We present high-angular-resolution {it Hubble Space Telescope (HST)} optical and near-infrared imaging of the compact planetary nebula (PN) IRAS 21282+5050. Optical images of this object reveal several complex morphological structures including three pairs of bipolar lobes and an elliptical shell lying close to the plane of the sky. From near-infrared observations, we found a dust torus oriented nearly perpendicular to the major axis of elliptical shell. The results suggest that IRAS 21282+5050 is a multipolar PN, and these structures developed early during the post asymptotic-giant-branch (AGB) evolution. From a three-dimensional (3-D) model, we derived the physical dimensions of these apparent structures. When the 3-D model is viewed from different orientations, IRAS 21282+5050 shows similar apparent structures as other multipolar PNs. Analysis of the spectral energy distribution and optical spectroscopic observations of the nebula suggests the presence of a cool companion to the hot central star responsible for the ionization of the nebula. Whether the binary nature of the central star has any relations with the multipolar structure of the nebula needs to be further investigated.
Extremely high velocity emission likely related to jets is known to occur in some proto-Planetary Nebulae. However, the molecular complexity of this kinematic component is largely unknown. We observed the known extreme outflow from the proto-Planetar y Nebula IRAS 16342-3814, a prototype water fountain, in the full frequency range from 73 to 111 GHz with the RSR receiver on the Large Millimetre Telescope. We detected the molecules SiO, HCN, SO, and $^{13}$CO. All molecular transitions, with the exception of the latter are detected for the first time in this source, and all present emission with velocities up to a few hundred km s$^{-1}$. IRAS 16342-3814 is therefore the only source of this kind presenting extreme outflow activity simultaneously in all these molecules, with SO and SiO emission showing the highest velocities found of these species in proto-Planetary Nebulae. To be confirmed is a tentative weak SO component with a FWHM $sim$ 700 km s$^{-1}$. The extreme outflow gas consists of dense gas (n$_{rm H_2} >$ 10$^{4.8}$--10$^{5.7}$ cm$^{-3}$), with a mass larger than $sim$ 0.02--0.15 M$_{odot}$. The relatively high abundances of SiO and SO may be an indication of an oxygen-rich extreme high velocity gas.
Water fountains (WFs) are evolved objects showing high-velocity, collimated jets traced by water maser emission. Most of them are in the post-Asymptotic Giant Branch and they may represent one of the first manifestations of collimated mass loss in ev olved stars. We present water maser, carbon monoxide, and mid-infrared spectroscopic data (obtained with the Australia Telescope Compact Array, Herschel Space Observatory, and the Very Large Telescope, respectively) toward IRAS 15103--5754, a possible planetary nebula (PN) with WF characteristics. Carbon monoxide observations show that IRAS 15103-5754 is an evolved object, while the mid-IR spectrum displays unambiguous [NeII] emission, indicating that photoionization has started and thus, its nature as a PN is confirmed. Water maser spectra show several components spreading over a large velocity range ~75 km/s and tracing a collimated jet. This indicates that the object is a WF, the first WF known that has already entered the PN phase. However, the spatial and kinematical distribution of the maser emission in this object are significantly different from those in other WFs. Moreover, the velocity distribution of the maser emission shows a Hubble-like flow (higher velocities at larger distances from the central star), consistent with a short-lived, explosive mass-loss event. This velocity pattern is not seen in other WFs (presumably in earlier evolutionary stages). We therefore suggest that we are witnessing a fundamental change of mass-loss processes in WFs, with water masers being pumped by steady jets in post-AGB stars, but tracing explosive/ballistic events as the object enters the PN phase.
Planetary nebulae expand on time scales of 10^3-10^4 yr. For nearby objects, their expansion can be detected within years to decades. The pattern of expansion probes the internal velocity field and provides clues to the nebula ejection mechanism. In the case of non-symmetric nebulae, and bipolar nebulae in particular, it can also provide information on the development of the morphology. We have measured the expansion proper motions in NGC 6302 from two epochs of HST imaging, separated by 9.43 years. This is used to determine the expansion age and the structure of the velocity field. We use HST images in the [N II] 6583{AA} filter from HST WF/PC2 and WFC3. The proper motions were obtained for a set of 200 individual tiles within 90 of the central star. The velocity field shows a characteristic linear increase of velocity with radial distance (a so-called Hubble flow). It agrees well with a previous determination by Meaburn et al. (2008), made in a lobe further from the star, which was based on a much longer time span. The pattern of proper motion vectors is mostly radial and the origin is close to the position of the central star directly detected by Szyszka et al. (2009). The results show that the lobes of NGC 6302 were ejected during a brief event 2250 pm 35yr ago. In the inner regions there is evidence for a subsequent acceleration of the gas by an additional 9.2 km/s, possibly related to the onset of ionization. The dense and massive molecular torus was ejected over 5000yr, ending about 2900yr ago. The lobes were ejected after a short interlude (the jet lag) of sim 600 yr during a brief event. The torus and lobes orig- inate from separate mass-loss events with different physical processes. The delay between the cessation of equatorial mass loss and the ejection of the lobes provides an important constraint for explaining the final mass-loss stages of the progenitor stellar system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا