ترغب بنشر مسار تعليمي؟ اضغط هنا

Initial phases of massive star formation in high infrared extinction clouds. II. Infall and onset of star formation

170   0   0.0 ( 0 )
 نشر من قبل Kazi Rygl L.J.
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف K. L. J. Rygl




اسأل ChatGPT حول البحث

The onset of massive star formation is not well understood because of observational and theoretical difficulties. To find the dense and cold clumps where massive star formation can take place, we compiled a sample of high infrared extinction clouds, which were observed previously by us in the 1.2 mm continuum emission and ammonia. We try to understand the star-formation stages of the clumps in these high extinction clouds by studying the infall and outflow properties, the presence of a young stellar object (YSO), and the level of the CO depletion through a molecular line survey with the IRAM 30m and APEX 12m telescopes. Moreover, we want to know if the cloud morphology, quantified through the column density contrast between the clump and the clouds, has an impact on the star formation occurring inside it. We find that the HCO+(1-0) line is the most sensitive for detecting infalling motions. SiO, an outflow tracer, was mostly detected toward sources with infall, indicating that infall is accompanied by collimated outflows. The presence of YSOs within a clump depends mostly on its column density; no signs of YSOs were found below 4E22 cm-2. Star formation is on the verge of beginning in clouds that have a low column density contrast; infall is not yet present in the majority of the clumps. The first signs of ongoing star formation are broadly observed in clouds where the column density contrast between the clump and the cloud is higher than two; most clumps show infall and outflow. Finally, the most evolved clumps are in clouds that have a column density contrast higher than three; almost all clumps have a YSO, and in many clumps, the infall has already halted. Hence, the cloud morphology, based on the column density contrast between the cloud and the clumps, seems to have a direct connection with the evolutionary stage of the objects forming inside.



قيم البحث

اقرأ أيضاً

To study the early phases of massive star formation, we present ALMA observations of SiO(5-4) emission and VLA observations of 6 cm continuum emission towards 32 Infrared Dark Cloud (IRDC) clumps, spatially resolved down to $lesssim 0.05$ pc. Out of the 32 clumps, we detect SiO emission in 20 clumps, and in 11 of them the SiO emission is relatively strong and likely tracing protostellar outflows. Some SiO outflows are collimated, while others are less ordered. For the six strongest SiO outflows, we estimate basic outflow properties. In our entire sample, where there is SiO emission, we find 1.3 mm continuum and infrared emission nearby, but not vice versa. We build the spectral energy distributions (SEDs) of cores with 1.3 mm continuum emission and fit them with radiative transfer (RT) models. The low luminosities and stellar masses returned by SED fitting suggest these are early stage protostars. We see a slight trend of increasing SiO line luminosity with bolometric luminosity, which suggests more powerful shocks in the vicinity of more massive YSOs. We do not see a clear relation between the SiO luminosity and the evolutionary stage indicated by $L/M$. We conclude that as a protostar approaches a bolometric luminosity of $sim 10^2 : L_{odot}$, the shocks in the outflow are generally strong enough to form SiO emission. The VLA 6 cm observations toward the 15 clumps with the strongest SiO emission detect emission in four clumps, which is likely shock ionized jets associated with the more massive ones of these protostellar cores.
The chemical evolution in high-mass star-forming regions is still poorly constrained. Studying the evolution of deuterated molecules allows to differentiate between subsequent stages of high-mass star formation regions due to the strong temperature d ependence of deuterium isotopic fractionation. We observed a sample of 59 sources including 19 infrared dark clouds, 20 high-mass protostellar objects, 11 hot molecular cores and 9 ultra-compact HII regions in the (3-2) transitions of the four deuterated molecules, DCN, DNC, DCO+ and N2D+ as well as their non-deuterated counterpart. The overall detection fraction of DCN, DNC and DCO+ is high and exceeds 50% for most of the stages. N2D+ was only detected in a few infrared dark clouds and high-mass protostellar objects. It can be related to problems in the bandpass at the frequency of the transition and to low abundances in the more evolved, warmer stages. We find median D/H ratios of ~0.02 for DCN, ~0.005 for DNC, ~0.0025 for DCO+ and ~0.02 for N2D+. While the D/H ratios of DNC, DCO+ and N2D+ decrease with time, DCN/HCN peaks at the hot molecular core stage. We only found weak correlations of the D/H ratios for N2D+ with the luminosity of the central source and the FWHM of the line, and no correlation with the H2 column density. In combination with a previously observed set of 14 other molecules (Paper I) we fitted the calculated column densities with an elaborate 1D physico-chemical model with time-dependent D-chemistry including ortho- and para-H2 states. Good overall fits to the observed data have been obtained the model. It is one of the first times that observations and modeling have been combined to derive chemically based best-fit models for the evolution of high-mass star formation including deuteration.
176 - R. Retes-Romero 2020
Ever since their discovery, Infrared dark clouds (IRDCs) are generally considered to be the sites just at the onset of high-mass (HM) star formation. In recent years, it has been realized that not all IRDCs harbour HM Young Stellar Objects (YSOs). On ly those IRDCs satisfying a certain mass-size criterion, or equivalently above a certain threshold density, are found to contain HMYSOs. In all cases, IRDCs provide ideal conditions for the formation of stellar clusters. In this paper, we study the massive stellar content of IRDCs to re-address the relation between IRDCs and HM star formation. For this purpose, we have identified all IRDCs associated to a sample of 12 Galactic molecular clouds (MCs). The selected MCs have been the target of a systematic search for YSOs in an earlier study. The catalogued positions of YSOs have been used to search all YSOs embedded in each identified IRDC. In total, we have found 834 YSOs in 128 IRDCs. The sample of IRDCs have mean surface densities of 319 Mo/pc2, mean mass of 1062 Mo, and a mass function power-law slope -1.8, which are similar to the corresponding properties for the full sample of IRDCs and resulting physical properties in previous studies. We find that all those IRDCs containing at least one intermediate to high-mass young star satisfy the often-used mass-size criterion for forming HM stars. However, not all IRDCs satisfying the mass-size criterion contain HM stars. We find that the often used mass-size criterion corresponds to 35% probability of an IRDC forming a massive star. Twenty five (20%) of the IRDCs are potential sites of stellar clusters of mass more than 100 Mo.
Previous observations have revealed an accretion disk and outflow motion in high-mass star-forming region G192.16-3.84. While collapse have not been reported before. We present here molecular line and continuum observations toward massive core G192.1 6-3.84 with the Submillimeter Array. C$^{18}$O(2-1) and HCO$^{+}$(3-2) lines show pronounced blue profiles, indicating gas infalling in this region. This is the first time that the infall motion has been reported in G192.16-3.84 core. Two-layer model fitting gave infall velocities of 2.0$pm$0.2 and 2.8$pm$0.1 km s$^{-1}$. Assuming that the cloud core follows a power-law density profile ($rho$$propto$$r^{1.5}$), the corresponding mass infall rates are (4.7$pm$1.7)$times10^{-3}$ and (6.6$pm$2.1)$times10^{-3}$ M$_{sun}$ yr$^{-1}$ for C$^{18}$O(2-1) and HCO$^{+}$(3-2), respectively. The derived infall rates are in agreement with the turbulent core model and those in other high-mass star-forming regions, suggesting that high accretion rate is a general requirement to form a massive star.
Massive clumps tend to fragment into clusters of cores and condensations, some of which form high-mass stars. In this work, we study the structure of massive clumps at different scales, analyze the fragmentation process, and investigate the possibili ty that star formation is triggered by nearby HII regions. We present a high angular resolution study of a sample of 8 massive proto-cluster clumps. Combining infrared data, we use few-arcsecond resolution radio- and millimeter interferometric data to study their fragmentation and evolution. Our sample is unique in the sense that all the clumps have neighboring HII regions. Taking advantage of that, we test triggered star formation using a novel method where we study the alignment of the centres of mass traced by dust emission at multiple scales. The eight massive clumps have masses ranging from 228 to 2279 $M_odot$. The brightest compact structures within infrared bright clumps are typically associated with embedded compact radio continuum sources. The smaller scale structures of $R_{rm eff}$ $sim$ 0.02 pc observed within each clump are mostly gravitationally bound and massive enough to form at least a B3-B0 type star. Many condensations have masses larger than 8 $M_odot$ at small scale of $R_{rm eff}$ $sim$ 0.02 pc. Although the clumps are mostly infrared quiet, the dynamical movements are active at clump scale ($sim$ 1 pc). We studied the spatial distribution of the gas conditions detected at different scales. For some sources we find hints of external triggering, whereas for others we find no significant pattern that indicates triggering is dynamically unimportant. This probably indicates that the different clumps go through different evolutionary paths. In this respect, studies with larger samples are highly desired.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا