ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual magnetism of layered chromium sulfides MCrS2 (M=Li, Na, K, Ag, and Au)

55   0   0.0 ( 0 )
 نشر من قبل Alexander Yaresko
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MCrS2 compounds (M=Li, Na, K, Cu, Ag, and Au) with triangular Cr layers show large variety of magnetic ground states ranging from 120-degree antiferromagnetic order of Cr spins in LiCrS2 to double stripes in AgCrS2, helimagnetic order in NaCrS2, and, finally, ferromagnetic Cr layers in KCrS2. On the base of ab-initio band structure calculations and an analysis of various contributions to exchange interactions between Cr spins we explain this tendency as originating from a competition between antiferromagnetic direct nearest-neighbor d-d exchange and ferromagnetic superexchange via S p states which leads to the change of the sign of the nearest neighbor interaction depending on the radius of a M ion. It is shown that other important interactions are the third-neighbor interaction in a layer and interlayer exchange. We suggest that strong magneto-elastic coupling is most probably responsible for multiferroic properties of at least one material of this family, namely, AgCrS2.

قيم البحث

اقرأ أيضاً

The classic metallurgical systems -- noble metal alloys -- that have formed the benchmark for various alloy theories, are revisited. First-principles fully relaxed general potential LAPW total energies of a few ordered structures are used as input to a mixed-space cluster expansion calculation to study the phase stability, thermodynamic properties and bond lengths in Cu-Au, Ag-Au, Cu-Ag and Ni-Au alloys. (i) Our theoretical calculations correctly reproduce the tendencies of Ag-Au and Cu-Au to form compounds and Ni-Au and Cu-Ag to phase separate at T=0 K. (ii) Of all possible structures, Cu/sub 3/Au (L1/sub 2/) and CuAu (L1/sub 0/) are found to be the most stable low-temperature phases of Cu/sub 1-x/Au/sub x/ with transition temperatures of 530 K and 660 K, respectively, compared to the experimental values 663 K and 670 K. The significant improvement over previous first-principles studies is attributed to the more accurate treatment of atomic relaxations in the present work. (iii) LAPW formation enthalpies demonstrate that L1/sub 2/, the commonly assumed stable phase of CuAu/sub 3/, is not the ground state for Au-rich alloys, but rather that ordered <100> superlattices are stabilized. (iv) We extract the non-configurational (e.g., vibrational) entropies of formation and obtain large values for the size mismatched systems: 0.48 k/sub B//atom in Ni/sub 0.5/Au/sub 0.5/ (T=1100 K), 0.37 k/sub B//atom in Cu/sub 0.14/Ag/sub 0.86/ (T=1052 K), and 0.16 k/sub B//atom in Cu/sub 0.5/Au/sub 0.5/ (T=800 K). (v) Using 8 atom/cell special quasirandom structures we study the bond lengths in disordered Cu-Au and Ni-Au alloys and obtain good qualitative agreement with recent EXAFS measurements.
Part of developing new strategies for fabrications of nanowire structures involves in many cases the aid of metal nanoparticles (NPs). It is highly beneficial if one can define both diameter and position of the initial NPs and make well-defined nanow ire arrays. This sets additional requirement on the NPs with respect to being able to withstand a pre-growth annealing process (i.e. de- oxidation of the III-V semiconductor surface) in an epitaxy system. Recently, it has been demonstrated that Ag may be an alternative to using Au NPs as seeds for particle-seeded nanowire fabrication. This work brings light onto the effect of annealing of Au, Ag and Au-Ag alloy NP arrays in two commonly used epitaxial systems, the Molecular Beam Epitaxy (MBE) and the Metalorganic Vapor Phase Epitaxy (MOVPE). The NP arrays are fabricated with the aid of Electron Beam Lithography on GaAs 100 and 111B wafers and the evolution of the NPs with respect to shape, size and position on the surfaces are studied after annealing using Scanning Electron Microscopy (SEM). We find that while the Au NP arrays are found to be stable when annealed up to 600 $^{circ}$C in a MOVPE system, a diameter and pitch dependent splitting of the particles are seen for annealing in a MBE system. The Ag NP arrays are less stable, with smaller diameters ($leq$ 50 nm) dissolving during annealing in both epitaxial systems. In general, the mobility of the NPs is observed to differ between the two the GaAs 100 and 111B surfaces. While the initial pattern is found be intact on the GaAs 111B surface for a particular annealing process and particle type, the increased mobility of the NP on the 100 may influence the initial pre-defined positions at higher annealing temperatures. The effect of annealing on Au-Ag alloy NP arrays suggests that these NP can withstand necessary annealing conditions for a complete de-oxidation of GaAs surfaces.
We conduct a comprehensive study of three different magnetic semiconductors, CrI$_3$, CrBr$_3$, and CrCl$_3$, by incorporating both few- and bi-layer samples in van der Waals tunnel junctions. We find that the interlayer magnetic ordering, exchange g ap, magnetic anisotropy, as well as magnon excitations evolve systematically with changing halogen atom. By fitting to a spin wave theory that accounts for nearest neighbor exchange interactions, we are able to further determine a simple spin Hamiltonian describing all three systems. These results extend the 2D magnetism platform to Ising, Heisenberg, and XY spin classes in a single material family. Using magneto-optical measurements, we additionally demonstrate that ferromagnetism can be stabilized down to monolayer in more isotropic CrBr$_3$, with transition temperature still close to that of the bulk.
90 - Marco Gibertini 2020
Chromium trihalides, CrX$_3$ (with X = Cl, Br, I), are a family of layered magnetic materials that can be easily exfoliated to provide ferromagnetic monolayers. When two layers are stacked together to form a bilayer the interlayer exchange coupling c an be either ferromagnetic or antiferromagnetic depending on the stacking sequence. Here we combine crystallographic arguments based on the close-packing condition with first-principles simulations to enumerate all possible stacking patterns in CrX$_3$ bilayers that preserve the spatial periodicity of each layer. We recover all configurations observed in bulk crystals and disclose stacking sequences with no bulk counterpart where the two layers have opposite chirality. Stacking sequences are ranked according to their relative stability and a preferential interlayer magnetic ordering is assigned to each of them. Simulations provide a consistent picture to frame all current experimental observations on bulk and exfoliated CrX$_3$ crystals, with interesting implications for future measurements, including synthetic bilayers with non-standard stacking patterns.
Through comprehensive density functional calculations, the crystallographic, magnetic and electronic properties of $Na_xCoO_2$ ($x$ = 1, 0.875, 0.75, 0.625 and 0.50) were investigated. We found that all Na ions in $NaCoO_2$ and $Na_{0.875}CoO_2$ shar e the basal coordinates with O ions. However, as $x$ decreases, some of Na ions move within the basal plane in order to reduce the in-plane Na$-$Na electrostatic repulsion. Magnetically, there was strong tendency for type A antiferromagnetism in the $Na_{0.75}CoO_2$ system, while all other Na deficient systems had a weaker ferromagnetic tendency. The results on magnetism were in excellent agreement with the experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا