ﻻ يوجد ملخص باللغة العربية
We show that the quantum query complexity of detecting if an $n$-vertex graph contains a triangle is $O(n^{9/7})$. This improves the previous best algorithm of Belovs making $O(n^{35/27})$ queries. For the problem of determining if an operation $circ : S times S rightarrow S$ is associative, we give an algorithm making $O(|S|^{10/7})$ queries, the first improvement to the trivial $O(|S|^{3/2})$ application of Grover search. Our algorithms are designed using the learning graph framework of Belovs. We give a family of algorithms for detecting constant-sized subgraphs, which can possibly be directed and colored. These algorithms are designed in a simple high-level language; our main theorem shows how this high-level language can be compiled as a learning graph and gives the resulting complexity. The key idea to our improvements is to allow more freedom in the parameters of the database kept by the algorithm. As in our previous work, the edge slots maintained in the database are specified by a graph whose edges are the union of regular bipartite graphs, the overall structure of which mimics that of the graph of the certificate. By allowing these bipartite graphs to be unbalanced and of variable degree we obtain better algorithms.
We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithm
The quantum query models is one of the most important models in quantum computing. Several well-known quantum algorithms are captured by this model, including the Deutsch-Jozsa algorithm, the Simon algorithm, the Grover algorithm and others. In this
Quantum span program algorithms for function evaluation commonly have reduced query complexity when promised that the input has a certain structure. We design a modified span program algorithm to show these speed-ups persist even without having a pro
Let $H$ be a fixed $k$-vertex graph with $m$ edges and minimum degree $d >0$. We use the learning graph framework of Belovs to show that the bounded-error quantum query complexity of determining if an $n$-vertex graph contains $H$ as a subgraph is $O
The query model (or black-box model) has attracted much attention from the communities of both classical and quantum computing. Usually, quantum advantages are revealed by presenting a quantum algorithm that has a better query complexity than its cla