ترغب بنشر مسار تعليمي؟ اضغط هنا

Lev Landau and the conception of neutron stars

71   0   0.0 ( 0 )
 نشر من قبل Dima Yakovlev
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the history of neutron star physics in the 1930s that is related to L. Landau. According to recollections of Rosenfeld (1974, Proc. 16th Solvay Conference on Physics, p. 174), Landau improvised the concept of neutron stars in a discussion with Bohr and Rosenfeld just after the news of the discovery of the neutron reached Copenhagen in February 1932. We present arguments that the discussion took place in March 1931, before the discovery of the neutron, and that they in fact discussed the paper written by Landau in Zurich in February 1931 but not published until February 1932 (Phys. Z. Sowjetunion, 1, 285). In his paper Landau mentioned the possible existence of dense stars which look like one giant nucleus; this can be regarded as an early theoretical prediction or anticipation of neutron stars, prior to the discovery of the neutron. The coincidence of the dates of the neutrons discovery and the papers publication has led to an erroneous association of the paper with the discovery of the neutron. In passing, we outline the contribution of Landau to the theory of white dwarfs and to the hypothesis of stars with neutron cores.

قيم البحث

اقرأ أيضاً

The discovery of non-diffuse sources of gravitational waves through compact-object mergers opens new prospects for the study of physics beyond the Standard Model. In this Letter, we consider the implications of the observation of GW190814, involving a coalescence of a black hole with a $sim$2.6 $M_odot$ compact object, which may be too massive to be a neutron star, given our current knowledge of the nuclear matter equation of state. We consider the possibility of a new force between quarks, suggested in other contexts, that modifies the neutron star equation of state, particularly at supranuclear densities. We evaluate how this modification can impact a neutron stars mass and radius to make the observed heavy compact object more probably a neutron star, rather than a black hole, and suggest that further such objects may yet be found. We note the terrestrial and astrophysical measurements that could confirm our picture.
We use a top-down holographic model for strongly interacting quark matter to study the properties of neutron stars. When the corresponding Equation of State (EoS) is matched with state-of-the-art results for dense nuclear matter, we consistently obse rve a first order phase transition at densities between two and seven times the nuclear saturation density. Solving the Tolman-Oppenheimer-Volkov equations with the resulting hybrid EoSs, we find maximal stellar masses in the excess of two solar masses, albeit somewhat smaller than those obtained with simple extrapolations of the nuclear matter EoSs. Our calculation predicts that no quark matter exists inside neutron stars.
We use the holographic V-QCD models to analyse the physics of dense QCD and neutron stars. Accommodating lattice results for thermodynamics of QCD enables us to make generic predictions for the Equation of State (EoS) of the quark matter phase in the cold and dense regime. We demonstrate that the resulting pressure in V-QCD matches well with a family of neutron-star-matter EoSs that interpolate between state-of-the-art theoretical results for low and high density QCD. After implementing the astrophysical constraints, i.e., the largest known neutron star mass and the recent LIGO/Virgo results for the tidal deformability, we analyse the phase transition between the baryonic and quark matter phases. We find that the baryon density $n_B$ at the transition is at least 2.9 times the nuclear saturation density $n_s$. The transition is of strongly first order at low and intermediate densities, i.e., for $n_B/n_s lesssim 7.5$.
We review the current status and recent progress of microscopic many-body approaches and phenomenological models, which are employed to construct the equation of state of neutron stars. The equation of state is relevant for the description of their s tructure and dynamical properties, and it rules also the dynamics of core-collapse supernovae and binary neutron star mergers. We describe neutron star matter assuming that the main degrees of freedom are nucleons and hyperons, disregarding the appearance of quark matter. We compare the theoretical predictions of the different equation-of-state models with the currently available data coming from both terrestrial laboratory experiments and recent astrophysical observations. We also analyse the importance of the nuclear strong interaction and equation of state for the cooling properties of neutron stars. We discuss the main open challenges in the description of the equation of state, mainly focusing on the limits of the different many-body techniques, the so-called hyperon puzzle, and the dependence of the direct URCA processes on the equation of state.
A promising probe to unmask particle dark matter is to observe its effect on neutron stars, the prospects of which depend critically on whether captured dark matter thermalizes in a timely manner with the stellar core via repeated scattering with the Fermi-degenerate medium. In this work we estimate the timescales for thermalization for multiple scenarios. These include: (a) spin-0 and spin-$frac{1}{2}$ dark matter, (b) scattering on non-relativistic neutron and relativistic electron targets accounting for the respective kinematics, (c) interactions via a range of Lorentz-invariant structures, (d) mediators both heavy and light in comparison to the typical transfer momenta in the problem. We discuss the analytic behavior of the thermalization time as a function of the dark matter and mediator masses, and the stellar temperature. Finally, we identify parametric ranges where both stellar capture is efficient and thermalization occurs within the age of the universe. For dark matter that can annihilate in the core, these regions indicate parametric ranges that can be probed by upcoming infrared telescopes observing cold neutron stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا