ﻻ يوجد ملخص باللغة العربية
(Abridged) The simultaneous UV to X-rays/gamma rays data obtained during the multi-wavelength XMM/INTEGRAL campaign on the Seyfert 1 Mrk 509 are used in this paper and tested against physically motivated broad band models. Each observation has been fitted with a realistic thermal comptonisation model for the continuum emission. Prompted by the correlation between the UV and soft X-ray flux, we use a thermal comptonisation component for the soft X-ray excess. The UV to X-rays/gamma-rays emission of Mrk 509 can be well fitted by these components. The presence of a relatively hard high-energy spectrum points to the existence of a hot (kT~100 keV), optically-thin (tau~0.5) corona producing the primary continuum. On the contrary, the soft X-ray component requires a warm (kT~1 keV), optically-thick (tau~15) plasma. Estimates of the amplification ratio for this warm plasma support a configuration close to the theoretical configuration of a slab corona above a passive disk. An interesting consequence is the weak luminosity-dependence of its emission, a possible explanation of the roughly constant spectral shape of the soft X-ray excess seen in AGNs. The temperature (~ 3 eV) and flux of the soft-photon field entering and cooling the warm plasma suggests that it covers the accretion disk down to a transition radius $R_{tr}$ of 10-20 $R_g$. This plasma could be the warm upper layer of the accretion disk. On the contrary the hot corona has a more photon-starved geometry. The high temperature ($sim$ 100 eV) of the soft-photon field entering and cooling it favors a localization of the hot corona in the inner flow. This soft-photon field could be part of the comptonised emission produced by the warm plasma. In this framework, the change in the geometry (i.e. $R_{tr}$) could explain most of the observed flux and spectral variability.
We report on a detailed study of the Fe K emission/absorption complex in the nearby, bright Seyfert 1 galaxy Mrk 509. The study is part of an extensive XMM-Newton monitoring consisting of 10 pointings (~60 ks each) about once every four days, and inc
We present in this paper the results of a 270 ks Chandra HETGS observation in the context of a large multiwavelength campaign on the Seyfert galaxy Mrk 509. The HETGS spectrum allows us to study the high ionisation warm absorber and the Fe-K complex
The bright Seyfert 1 galaxy Mrk 509 was monitored by XMM-Newton and other satellites in 2009 to constrain the location of the outflow. We have studied the response of the photoionised gas to changes in the ionising flux produced by the central region
We model the broad emission lines present in the optical, UV and X-ray spectra of Mrk 509, a bright type 1 Seyfert galaxy. The broad lines were simultaneously observed during a large multiwavelength campaign, using the XMM-Newton-OM for the optical l
We present here the results of a 180 ks Chandra-LETGS observation as part of a large multi-wavelength campaign on Mrk 509. We study the warm absorber in Mrk 509 and use the data from a simultaneous HST-COS observation in order to assess whether the g