ترغب بنشر مسار تعليمي؟ اضغط هنا

Major Galaxy Mergers Only Trigger the Most Luminous AGN

151   0   0.0 ( 0 )
 نشر من قبل Ezequiel Treister
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Treister




اسأل ChatGPT حول البحث

Using multiwavelength surveys of active galactic nuclei across a wide range of bolometric luminosities (10^{43}<L_{bol}(erg/s<5x10^{46}) and redshifts (0<z<3), we find a strong, redshift-independent correlation between the AGN luminosity and the fraction of host galaxies undergoing a major merger. That is, only the most luminous AGN phases are connected to major mergers, while less luminous AGN appear to be driven by secular processes. Combining this trend with AGN luminosity functions to assess the overall cosmic growth of black holes, we find that ~50% by mass is associated with major mergers, while only 10% of AGN by number, the most luminous, are connected to these violent events. Our results suggest that to reach the highest AGN luminosities -where the most massive black holes accreted the bulk of their mass - a major merger appears to be required. The luminosity dependence of the fraction of AGN triggered by major mergers can successfully explain why the observed scatter in the M-sigma relation for elliptical galaxies is significantly lower than in spirals. The lack of a significant redshift dependence of the L_{bol}-f_{merger} relation suggests that downsizing, i.e., the general decline in AGN and star formation activity with decreasing redshift, is driven by a decline in the frequency of major mergers combined with a decrease in the availability of gas at lower redshifts.



قيم البحث

اقرأ أيضاً

We analyse subarcsecond resolution interferometric CO line data for twelve sub-millimetre-luminous (S850um > 5mJy) galaxies with redshifts between 1 and 3, presenting new data for four of them. Morphologically and kinematically most of the twelve sys tems appear to be major mergers. Five of them are well-resolved binary systems, and seven are compact or poorly resolved. Of the four binary systems for which mass measurements for both separate components can be made, all have mass ratios of 1:3 or closer. Furthermore, comparison of the ratio of compact to binary systems with that observed in local ULIRGs indicates that at least a significant fraction of the compact SMGs must also be late-stage mergers. In addition, the dynamical and gas masses we derive are most consistent with the lower end of the range of stellar masses published for these systems, favouring cosmological models in which SMGs result from mergers. These results all point to the same conclusion, that likely most of the bright SMGs with L_IR > 5x10e12L_sun are major mergers.
120 - Eilat Glikman 2015
We used the Hubble Space Telescope WFC3 near-infrared camera to image the host galaxies of a sample of eleven luminous, dust-reddened quasars at z ~ 2 -- the peak epoch of black hole growth and star formation in the Universe -- to test the merger-dri ven picture for the co-evolution of galaxies and their nuclear black holes. The red quasars come from the FIRST+2MASS red quasar survey and a newer, deeper, UKIDSS+FIRST sample. These dust-reddened quasars are the most intrinsically luminous quasars in the Universe at all redshifts, and may represent the dust-clearing transitional phase in the merger-driven black hole growth scenario. Probing the host galaxies in rest-frame visible light, the HST images reveal that 8/10 of these quasars have actively merging hosts, while one source is reddened by an intervening lower redshift galaxy along the line-of-sight. We study the morphological properties of the quasar hosts using parametric Sersic fits as well as the non-parametric estimators (Gini coefficient, M_{20} and asymmetry). Their properties are heterogeneous but broadly consistent with the most extreme morphologies of local merging systems such as Ultraluminous Infrared galaxies. The red quasars have a luminosity range of log(L_bol) = 47.8 - 48.3 (erg/s) and the merger fraction of their AGN hosts is consistent with merger-driven models of luminous AGN activity at z=2, which supports the picture in which luminous quasars and galaxies co-evolve through major mergers that trigger both star formation and black hole growth.
We present HST WFC3 F160W imaging and infrared spectral energy distributions for twelve extremely luminous, obscured AGN at $1.8<z<2.7$, selected via Hot, Dust Obscured mid-infrared colors. Their infrared luminosities span $2-15times10^{13}$L$_{odot} $, making them among the most luminous objects in the Universe at $zsim2$. In all cases the infrared emission is consistent with arising at least in most part from AGN activity. The AGN fractional luminosities are higher than those in either sub-millimeter galaxies, or AGN selected via other mid-infrared criteria. Adopting the $G$, M$_{20}$ and $A$ morphological parameters, together with traditional classification boundaries, infers that three quarters of the sample as mergers. Our sample do not, however, show any correlation between the considered morphological parameters and either infrared luminosity or AGN fractional luminosity. Moreover, their asymmetries and effective radii are distributed identically to those of massive galaxies at $zsim2$. We conclude that our sample is not preferentially associated with mergers, though a significant merger fraction is still plausible. Instead, we propose that our sample are examples of the massive galaxy population at $zsim2$ that harbor a briefly luminous, flickering AGN, and in which the $G$ and M$_{20}$ values have been perturbed, due to either the AGN, and/or the earliest formation stages of a bulge in an inside-out manner. Furthermore, we find that the mass assembly of the central black holes in our sample leads the mass assembly of any bulge component. Finally, we speculate that our sample represent a small fraction of the immediate antecedents of compact star-forming galaxies at $zsim2$.
Galaxy interactions are thought to be one of the main triggers of Active Galactic Nuclei (AGN), especially at high luminosities, where the accreted gas mass during the AGN lifetime is substantial. Evidence for a connection between mergers and AGN, ho wever, remains mixed. Possible triggering mechanisms remain particularly poorly understood for luminous AGN, which are thought to require triggering by major mergers, rather than secular processes. We analyse the host galaxies of a sample of 20 optically and X-ray selected luminous AGN (log($L_{bol}$ [erg/s]) $>$ 45) at z $sim$ 0.6 using HST WFC3 data in the F160W/H band. 15/20 sources have resolved host galaxies. We create a control sample of mock AGN by matching the AGN host galaxies to a control sample of non-AGN galaxies. Visual signs of disturbances are found in about 25% of sources in both the AGN hosts and control galaxies. Using both visual classification and quantitative morphology measures, we show that the levels of disturbance are not enhanced when compared to a matched control sample. We find no signs that major mergers play a dominant role in triggering AGN at high luminosities, suggesting that minor mergers and secular processes dominate AGN triggering up to the highest AGN luminosities. The upper limit on the enhanced fraction of major mergers is $leqslant$20%. While major mergers might increase the incidence of (luminous AGN), they are not the prevalent triggering mechanism in the population of unobscured AGN.
A suite of 432 collisionless simulations of bound pairs of spiral galaxies with mass ratios 1:1 and 3:1, and global properties consistent with the $Lambda$CDM paradigm, is used to test the conjecture that major mergers fuel the dual AGN (DAGN) of the local volume. Our analysis is based on the premise that the essential aspects of this scenario can be captured by replacing the physics of the central BH with restrictions on their relative separation in phase space. We introduce several estimates of the DAGN fraction and infer predictions for the activity levels and resolution limits usually involved in surveys of these systems, assessing their dependence on the parameters controlling the length of both mergers and nuclear activity. Given a set of constraints, we find that the values adopted for some of the latter factors often condition the outcomes from individual experiments. Still, the results do not reveal, in general, very tight correlations, being the tendency of the frequencies normalized to the merger time to anticorrelate with the orbital circularity the clearest effect. In agreement with other theoretical studies, our simulations predict intrinsic abundances of these systems that range from $sim$few to $15%$ depending on the maximum level of nuclear activity achieved. At the same time, we show that these probabilities are reduced by about an order of magnitude when they are filtered with the typical constraints applied by observational studies of the DAGN fraction at low redshift. As a whole, the results of the present work prove that the consideration of the most common limitations involved in the detection of close active pairs at optical wavelengths is sufficient by itself to reconcile the intrinsic frequencies envisaged in a hierarchical universe with the small fractions of double-peaked narrow-line systems which are often reported at kpc-scales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا