ترغب بنشر مسار تعليمي؟ اضغط هنا

Small scale rotational disorder observed in epitaxial graphene on SiC(0001)

161   0   0.0 ( 0 )
 نشر من قبل Andrew Walter
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Interest in the use of graphene in electronic devices has motivated an explosion in the study of this remarkable material. The simple, linear Dirac cone band structure offers a unique possibility to investigate its finer details by angle-resolved photoelectron spectroscopy (ARPES). Indeed, ARPES has been performed on graphene grown on metal substrates but electronic applications require an insulating substrate. Epitaxial graphene grown by the thermal decomposition of silicon carbide (SiC) is an ideal candidate for this due to the large scale, uniform graphene layers produced. The experimental spectral function of epitaxial graphene on SiC has been extensively studied. However, until now the cause of an anisotropy in the spectral width of the Fermi surface has not been determined. In the current work we show, by comparison of the spectral function to a semi-empirical model, that the anisotropy is due to small scale rotational disorder ($simpm$ 0.15$^{circ}$) of graphene domains in graphene grown on SiC(0001) samples. In addition to the direct benefit in the understanding of graphenes electronic structure this work suggests a mechanism to explain similar variations in related ARPES data.



قيم البحث

اقرأ أيضاً

180 - I. Deretzis , A. La Magna 2009
We present electronic structure calculations of few-layer epitaxial graphene nanoribbons on SiC(0001). Trough an atomistic description of the graphene layers and the substrate within the extended H{u}ckel Theory and real/momentum space projections we argue that the role of the heterostructures interface becomes crucial for the conducting capacity of the studied systems. The key issue arising from this interaction is a Fermi level pinning effect introduced by dangling interface bonds. Such phenomenon is independent from the width of the considered nanostructures, compromising the importance of confinement in these systems.
208 - T. Shen , J.J. Gu , M. Xu 2009
Epitaxial graphene films were formed on the Si-face of semi-insulating 4H-SiC substrates by a high temperature sublimation process. A high-k gate stack on epitaxial graphene is realized by inserting a fully oxidized nanometer thin aluminum film as a seeding layer followed by an atomic-layer deposition process. The electrical properties of epitaxial graphene films are sustained after gate stack formation without significant degradation. At low temperatures, the quantum-Hall effect in Hall resistance is observed along with pronounced Shubnikov-de Hass oscillations in diagonal magneto-resistance of gated epitaxial graphene on SiC (0001).
We have performed low temperature scanning tunnelling spectroscopy (STS) measurements on graphene epitaxially grown on Ru(0001). An inelastic feature, related to the excitation of a vibrational breathing mode of the graphene lattice, was found at 360 meV. The change in the differential electrical conductance produced by this inelastic feature, which is associated with the electron-phonon interaction strength, varies spatially from one position to other of the graphene supercell. This inhomogeneity in the electronic properties of graphene on Ru(0001) results from local variations of the carbon-ruthenium interaction due to the lattice mismatch between the graphene and the Ru(0001) lattices.
In this letter we report on transport measurements of epitaxial graphene on SiC(0001) with oxygen adsorption. In a $50times 50 mumathrm{m^2}$ size Hall bar we observe the half-integer quantum Hall effect with a transverse resistance plateau quantized at filling factor around $ u = 2$, an evidence of monolayer graphene. We find low electron concentration of $9times 10^{11} textrm{cm}^{-2}$ and we show that a doping of $10^{13}textrm{cm}^{-2}$ which is characteristic of intrinsic epitaxial graphene can be restored by vacuum annealing. The effect of oxygen adsorption on carrier density is confirmed by local angle-resolved photoemission spectroscopy measurements. These results are important for understanding oxygen adsorption on epitaxial graphene and for its application to metrology and mesoscopic physics where a low carrier concentration is required.
We report the realization of top-gated graphene nanoribbon field effect transistors (GNRFETs) of ~10 nm width on large-area epitaxial graphene exhibiting the opening of a band gap of ~0.14 eV. Contrary to prior observations of disordered transport an d severe edge-roughness effects of GNRs, the experimental results presented here clearly show that the transport mechanism in carefully fabricated GNRFETs is conventional band-transport at room temperature, and inter-band tunneling at low temperature. The entire space of temperature, size, and geometry dependent transport properties and electrostatics of the GNRFETs are explained by a conventional thermionic emission and tunneling current model. Our combined experimental and modeling work proves that carefully fabricated narrow GNRs behave as conventional semiconductors, and remain potential candidates for electronic switching devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا