ترغب بنشر مسار تعليمي؟ اضغط هنا

The Structure of Pre-transitional Protoplanetary Disks I: Radiative Transfer Modeling of the Disk+Cavity in the PDS 70 system

112   0   0.0 ( 0 )
 نشر من قبل Ruobing Dong
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Through detailed radiative transfer modeling, we present a disk+cavity model to simultaneously explain both the SED and Subaru H-band polarized light imaging for the pre-transitional protoplanetary disk PDS 70. Particularly, we are able to match not only the radial dependence, but also the absolute scale, of the surface brightness of the scattered light. Our disk model has a cavity 65 AU in radius, which is heavily depleted of sub-micron-sized dust grains, and a small residual inner disk which produces a weak but still optically thick NIR excess in the SED. To explain the contrast of the cavity edge in the Subaru image, a factor of ~1000 depletion for the sub-micron-sized dust inside the cavity is required. The total dust mass of the disk may be on the order of 1e-4 M_sun, only weakly constrained due to the lack of long wavelength observations and the uncertainties in the dust model. The scale height of the sub-micron-sized dust is ~6 AU at the cavity edge, and the cavity wall is optically thick in the vertical direction at H-band. PDS 70 is not a member of the class of (pre-)transitional disks identified by Dong et al. (2012), whose members only show evidence of the cavity in the millimeter-sized dust but not the sub-micron-sized dust in resolved images. The two classes of (pre-)transitional disks may form through different mechanisms, or they may just be at different evolution stages in the disk clearing process.



قيم البحث

اقرأ أيضاً

We present high resolution H-band polarized intensity (PI; FWHM = 0.1: 14 AU) and L-band imaging data (FWHM = 0.11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0.2) up to 210 AU (1.5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is ~70 AU. Our data show that the geometric center of the disk shifts by ~6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L-band imaging data, we put an upper limit mass of companions at ~30 to ~50MJ within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.
The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations w ould result in different radial distributions of the gas and the small (sub-$mu$m size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report SMA observations of the dust continuum at 1.3~mm and $^{12}$CO~$J=2rightarrow1$ line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS~70. PDS~70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of $sim$65~AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of $sim$80~AU at 1.3~mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust-disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap-radii of the disk around PDS~70 are potentially formed by several (unseen) accreting planets inducing dust filtration.
We present ALMA 0.87 mm continuum, HCO+ J=4--3 emission line, and CO J=3--2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two component transitional disk system with a radial dust gap of 0.2 +/- 0.05, an azimuthal gap in the HCO+ J=4--3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analogue in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D (Whitney et al. 2013) using a two disk components. We find that there is a radial gap that extends from 15-60 au in all grain sizes which differs from previous work.
As host to two accreting planets, PDS 70 provides a unique opportunity to probe the chemical complexity of atmosphere-forming material. We present ALMA Band 6 observations of the PDS~70 disk and report the first chemical inventory of the system. With a spatial resolution of 0.4-0.5 ($sim$50 au), 12 species are detected, including CO isotopologues and formaldehyde, small hydrocarbons, HCN and HCO+ isotopologues, and S-bearing molecules. SO and CH3OH are not detected. All lines show a large cavity at the center of the disk, indicative of the deep gap carved by the massive planets. The radial profiles of the line emission are compared to the (sub-)mm continuum and infrared scattered light intensity profiles. Different molecular transitions peak at different radii, revealing the complex interplay between density, temperature and chemistry in setting molecular abundances. Column densities and optical depth profiles are derived for all detected molecules, and upper limits obtained for the non detections. Excitation temperature is obtained for H2CO. Deuteration and nitrogen fractionation profiles from the hydro-cyanide lines show radially increasing fractionation levels. Comparison of the disk chemical inventory to grids of chemical models from the literature strongly suggests a disk molecular layer hosting a carbon to oxygen ratio C/O>1, thus providing for the first time compelling evidence of planets actively accreting high C/O ratio gas at present time.
119 - R. Dong , R. Rafikov , Z. Zhu 2012
Transitional circumstellar disks around young stellar objects have a distinctive infrared deficit around 10 microns in their Spectral Energy Distributions (SED), recently measured by the Spitzer Infrared Spectrograph (IRS), suggesting dust depletion in the inner regions. These disks have been confirmed to have giant central cavities by imaging of the submillimeter (sub-mm) continuum emission using the Submillimeter Array (SMA). However, the polarized near-infrared scattered light images for most objects in a systematic IRS/SMA cross sample, obtained by HiCIAO on the Subaru telescope, show no evidence for the cavity, in clear contrast with SMA and Spitzer observations. Radiative transfer modeling indicates that many of these scattered light images are consistent with a smooth spatial distribution for micron-sized grains, with little discontinuity in the surface density of the micron-sized grains at the cavity edge. Here we present a generic disk model that can simultaneously account for the general features in IRS, SMA, and Subaru observations. Particularly, the scattered light images for this model are computed, which agree with the general trend seen in Subaru data. Decoupling between the spatial distributions of the micron-sized dust and mm-sized dust inside the cavity is suggested by the model, which, if confirmed, necessitates a mechanism, such as dust filtration, for differentiating the small and big dust in the cavity clearing process. Our model also suggests an inwardly increasing gas-to-dust-ratio in the inner disk, and different spatial distributions for the small dust inside and outside the cavity, echoing the predictions in grain coagulation and growth models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا