ترغب بنشر مسار تعليمي؟ اضغط هنا

Work hardening behavior in a steel with multiple TRIP mechanisms

74   0   0.0 ( 0 )
 نشر من قبل David Van Aken
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transformation induced plasticity (TRIP) behavior was studied in steel with composition Fe-0.07C-2.85Si-15.3Mn-2.4Al-0.017N that exhibited two TRIP mechanisms. The initial microstructure consisted of both {epsilon}- and {alpha}-martensites with 27% retained austenite. TRIP behavior in the first 5% strain was predominately austenite transforming to {epsilon}-martensite (Stage I), but upon saturation of Stage I, the {epsilon}-martensite transformed to {alpha}-martensite (Stage II). Alloy segregation also affected the TRIP behavior with alloy rich regions producing TRIP just prior to necking. This behavior was explained by first principle calculations that revealed aluminum significantly affected the stacking fault energy in Fe-Mn-Al-C steels by decreasing the unstable stacking fault energy and promoting easy nucleation of {epsilon}-martensite. The addition of aluminum also raised the intrinsic stacking fault energy and caused the {epsilon}-martensite to be unstable and transform to {alpha}-martensite under further deformation. The two stage TRIP behavior produced a high strain hardening exponent of 1.4 and led to ultimate tensile strength of 1165 MPa and elongation to failure of 35%.

قيم البحث

اقرأ أيضاً

The anomalously large dielectric aging in ferroelectric partially deuterated potassium dihydrogen phosphate (DKDP) is found to have multiple distinct mechanisms. Two components cause decreases in dielectric response over a limited range of fields aro und the aging field. A large fraction of this aging occurs on time scales of ~1000s after a field change, as expected for a hydrogen/deuterium diffusion mechanism. A slower component can give almost complete loss of domain-wall dielectric response at the aging field after weeks of aging. There is also a particularly unusual aging in which the dielectric response increases with time after rapid cooling.
122 - A. Ray , P. Barat , P. Mukherjee 2005
Plastic flow behavior of low carbon steel has been studied at room temperature during tensile deformation by varying the initial strain rate of 3.3x10e-4 1/sec to the final strain rate ranging from 1.33x10e-3 1/sec to 2.0x10e-3 1/sec at a fixed engin eering strain of 12%. Haasen plot revealed that the mobile dislocation density remained almost invariant at the juncture where there was a sudden increase in stress with the change in strain rate and the plastic flow was solely dependent on the velocity of mobile dislocations. In that critical regime, the variation of stress with time was fitted with a Boltzman type Sigmoid function. The increase in stress was found to increase with final strain rate and the time elapsed to attain these stress values showed a decreasing trend. Both of these parameters saturated asymptotically at higher final strain rate.
Interpretation of thermal hardening phenomenon at high strain rate has recently become a critical problem in shock wave physics. In this letter, this problem is addressed from a viewpoint of dislocation generation, and a novel conclusion is gained th at forest hardening induced by homogeneous nucleation (HN) results in thermal hardening behavior in a BCC metal significantly, apart from phonon drag mechanism. Through numerical simulations with a dislocation based crystal plasticity model, we have reproduced the experimental results quantitatively and predicted a thermal hardening behavior in other BCC metals, i.e., Mo, at higher temperature.
Conductance histograms of work-hardened Al show a series up to 11 equidistant peaks with a period of 1.15 +/- 0.02 of the quantum conductance unit G_0 = 2e^2/h. Assuming the peaks originate from atomic discreteness, this agrees with the value of 1.16 G_0 per atom obtained in numerical calculations by Hasmy et al.
There is considerable interest in the pH-dependent, switchable, biocatalytic properties of cerium oxide (CeO2) nanoparticles (CeNPs) in biomedicine, where these materials exhibit beneficial antioxidant activity against reactive oxygen species (ROS) a t basic physiological pH but cytotoxic prooxidant activity in acidic cancer cell pH microenvironment. While the general characteristics of the role of oxygen vacancies are known, the mechanism of their action at the atomic scale under different pH conditions has yet to be elucidated. The present work applies density functional theory (DFT) calculations to interpret, at the atomic scale, the pH-induced behavior of the stable {111} surface of CeO2 containing oxygen vacancies. Analysis of the surface-adsorbed media species reveals the critical role of pH on the interaction between ROS and the defective CeO2 {111} surface. Under basic conditions, the superoxide dismutase (SOD) and catalase (CAT) biomimetic reactions can be performed cyclically, scavenging and decomposing ROS to harmless products, making CeO2 an excellent antioxidant. However, under acidic conditions, the CAT biomimetic reaction is hindered owing to the limited reversibility of Ce3+ and Ce4+ and formation and annihilation of oxygen vacancies. A Fenton biomimetic reaction is predicted to occur simultaneously with the SOD and CAT biomimetic reactions, resulting in the formation of hydroxyl radicals, making CeO2 a cytotoxic prooxidant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا