ﻻ يوجد ملخص باللغة العربية
We report on a recent calculation of the properties of the $DNN$ system, a charmed meson with two nucleons. The system is analogous to the $bar K NN$ system substituting a strange quark by a charm quark. Two different methods are used to evaluate the binding and width, the Fixed Center approximation to the Faddeev equations and a variational calculation. In both methods we find that the system is bound by about 200 MeV and the width is smaller than 40 MeV, a situation opposite to the one of the $bar K NN$ system and which makes this state well suited for experimental observation.
To solve the spinor-spinor Bethe-Salpeter equation in Euclidean space we propose a novel method related to the use of hyperspherical harmonics. We suggest an appropriate extension to form a new basis of spin-angular harmonics that is suitable for a r
We study ground and radial excitations of flavor singlet and flavored pseudoscalar mesons within the framework of the rainbow-ladder truncation using an infrared massive and finite interaction in agreement with recent results for the gluon-dressing f
We consider a model of relativistic three-body scattering with a bound state in the two-body sub-channel. We show that the naive K-matrix type parametrization, here referred to as the B-matrix, has nonphysical singularities near the physical region.
The Bethe-Salpeter equation for three bosons with zero-range interaction is solved for the first time. For comparison the light-front equation is also solved. The input is the two-body scattering length and the outputs are the three-body binding ener
We show that the D^- meson will form narrow bound states with ^{208}Pb. Mean field potentials for the D^0, D^0-bar and D^- in ^{208}Pb are calculated self-consistently using the quark-meson coupling (QMC) model in local density approximation. The mes