ترغب بنشر مسار تعليمي؟ اضغط هنا

Global Gravitationally-Organized Spiral Waves and the Structure of NGC 5247

67   0   0.0 ( 0 )
 نشر من قبل Sergej Khoperskov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using observational data, we build numerical N-body, hydrodynamical and combined equilibrium models for the spiral galaxy NGC 5247. The models turn out to be unstable towards spiral structure formation. We simulate scenarios of spiral structure formation for different sets of equilibrium rotation curves, radial velocity dispersion profiles and disk thickness and demonstrate that in all cases a simulated spiral pattern qualitatively agrees with the observed morphology of NGC 5247. We also demonstrate that an admixture of a gaseous component with mass of about a few percent of the total mass of the disk increases a lifetime of a spiral pattern by approximately 30%. The simulated spiral pattern in this case lasts for about 3 Gyr from the beginning of the growth of perturbations.



قيم البحث

اقرأ أيضاً

NGC 1097 is a nearby barred spiral galaxy believed to be interacting with the elliptical galaxy NGC 1097A located to its northwest. It hosts a Seyfert 1 nucleus surrounded by a circumnuclear starburst ring. Two straight dust lanes connected to the ri ng extend almost continuously out to the bar. The other ends of the dust lanes attach to two main spiral arms. To provide a physical understanding of its structural and kinematical properties, two-dimensional hydrodynamical simulations have been carried out. Numerical calculations reveal that many features of the gas morphology and kinematics can be reproduced provided that the gas flow is governed by a gravitational potential associated with a slowly rotating strong bar. By including the self-gravity of the gas disk in our calculation, we have found the starburst ring to be gravitationally unstable which is consistent with the observation in citet{hsieh11}. Our simulations show that the gas inflow rate is 0.17 M$_sun$ yr$^{-1}$ into the region within the starburst ring even after its formation, leading to the coexistence of both a nuclear ring and a circumnuclear disk.
115 - Yuri N.Efremov 2010
We consider the possible pattern of the overall spiral structure of the Galaxy, using data on the distribution of neutral (atomic), molecular, and ionized hydrogen, on the base of the hypothesis of the spiral structure being symmetric, i.e. the assum ption that spiral arms are translated into each other for a rotation around the galactic center by 180{deg} (a two-arm pattern) or by 90{deg} (a four-arm pattern). We demonstrate that, for the inner region, the observations are best represented with a four-arm scheme of the spiral pattern, associated with all-Galaxy spiral density waves. The basic position is that of the Carina arm, reliably determined from distances to HII regions and from HI and H2 radial velocities. This pattern is continued in the quadrants III and IV with weak outer HI arms; from their morphology, the Galaxy should be considered an asymmetric multi-arm spiral. The kneed shape of the outer arms that consist of straight segments can indicate that these arms are transient formations that appeared due to a gravitational instability in the gas disk. The distances between HI superclouds in the two arms that are the brightest in neutral hydrogen, the Carina arm and the Cygnus (Outer) arm, concentrate to two values, permitting to assume the presence of a regular magnetic field in these arms.
73 - Curtis Struck 2011
We have discovered long-lived waves in two sets of numerical models of fast (marginally bound or unbound) flyby galaxy collisions, carried out independently with two different codes. In neither simulation set are the spirals the result of a collision -induced bar formation. Although there is variation in the appearance of the waves with time, they do not disappear and reform recurrently, as seen in other cases described in the literature. We also present an analytic theory that can account for the wave structure, not as propagating transients, nor as a fixed pattern propagating through the disc. While these waves propagate through the disc, they are maintained by the coherent oscillations initiated by the impulsive disturbance. Specifically, the analytic theory suggests that they are caustic waves in ensembles of stars pursuing correlated epicyclic orbits after the disturbance. This theory is an extension of that developed by Struck and collaborators for colliding ring galaxies. The models suggest that this type of wave may persist for a couple of Gyr., and galaxy interactions occur on comparable timescales, so waves produced by the mechanism may be well represented in observed spirals. In particular, this mechanism can account for the tightly wound, and presumably long-lived spirals, seen in some nearby early-type galaxies. These spirals are also likely to be common in groups and clusters, where fast encounters between galaxies occur relatively frequently. However, as the spirals become tightly wound, and evolve to modest amplitudes, they may be difficult to resolve unless they are nearby. Nonetheless, the effect may be one of several processes that result from galaxy harassment, and via wave-enhanced star formation contribute to the Butcher-Oemler effect.
Ground-based surveys have mapped the stellar outskirts of Local Group galaxies in unprecedented detail, but extending this work to other galaxies is necessary to overcome stochastic variations in evolutionary history and provide more stringent constr aints on cosmological galaxy formation models. As part of our continuing program of ultra-deep imagery of galaxies beyond the Local Group, we present a wide-field analysis of the isolated late-type spiral NGC2403 using data obtained with Suprime-Cam on Subaru. The survey reaches a maximum projected radius of 30 kpc or deprojected radius of R_dp~60 kpc. The colour-magnitude diagram reaches 1.5 mag below the tip of the metal-poor red giant branch (RGB) at a completeness rate > 50% for R_dp >12 kpc. Using the combination of diffuse light photometry and resolved star counts, we are able to trace the radial surface brightness (SB) profile over a much larger range of radii and surface brightness than is possible with either technique alone. The exponential disc as traced by RGB stars dominates the SB profile out to >8 disc scale-lengths, or R_dp~18 kpc, and reaches a V-band SB of 29 mag per sq. arcsec. Beyond this radius, we find evidence for an extended structural component with a significantly flatter SB profile than the inner disc and which we trace to R_dp~40 kpc and ~32 mag per sq. arcsec. This component can be fit with a power-law index of ~3, has an axial ratio consistent with that of the inner disc and has a V-band luminosity of 1-7% that of the whole galaxy. At R_dp~20 - 30 kpc, we estimate a peak metallicity [M/H]= -1.0+/-0.3. Although the extant data are unable to discriminate between stellar halo or thick disc interpretations of this component, our results support the notion that faint, extended stellar structures are a common feature of all disc galaxies, even isolated, low-mass systems.
We investigate photometric properties of spiral arms and stellar complexes/associations inside these arms in the grand design NGC 628 (M74) galaxy.We analyze GALEX ultraviolet, optical UBVRI, and H-alpha? surface photometry data, including those obta ined with 1.5 m telescope at the Maidanak Observatory. In the longer arm, the large and bright stellar complexes are located at regular intervals along the arm, but only farther from the galaxy center. They are joined with the narrow lane of dust, visible only in the infrared bands. The usual dust lane along the stellar arm inner side is seen there only at distances closer to the galaxy center. It is well expressed in CO (H_2) image. We have found, that the second, short arm hosts two dust lanes, the strong and wide at the inner side, and narrow and irregular along its outer edge. This outer dust lane is well seen in IR images only. The shorter arm contains no star complexes at all. Gradients of age and luminosity of stars across both arms are missing (again excepting the parts of arms located closer to the center), which is confirmed by our photometric cuts across both arms. The drastic difference in the morphology of the two symmetric arms (grand design type) of a galaxy has now been confirmed by objective measurements in the case of M74. It is unclear why about two third of galaxies with beaded arms host these beads (star complexes) in one arm only.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا