ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral Energy Distributions of Type 1 AGN in the COSMOS Survey I - The XMM-COSMOS Sample

536   0   0.0 ( 0 )
 نشر من قبل Heng Hao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Cosmic Evolution Survey (COSMOS) enables the study of the Spectral Energy Distributions (SEDs) of Active Galactic Nuclei (AGN) because of the deep coverage and rich sampling of frequencies from X-ray to radio. Here we present a SED catalog of 413 X-ray (xmm) selected type 1 (emission line FWHM$>2000$ km s$^{-1}$) AGN with Magellan, SDSS or VLT spectrum. The SEDs are corrected for the Galactic extinction, for broad emission line contributions, constrained variability, and for host galaxy contribution. We present the mean SED and the dispersion SEDs after the above corrections in the rest frame 1.4 GHz to 40 keV, and show examples of the variety of SEDs encountered. In the near-infrared to optical (rest frame $sim 8mu m$-- 4000AA), the photometry is complete for the whole sample and the mean SED is derived from detections only. Reddening and host galaxy contamination could account for a large fraction of the observed SED variety. The SEDs are all available on-line.



قيم البحث

اقرأ أيضاً

The mid-infrared to ultraviolet (0.1 -- 10 $mu m$) spectral energy distribution (SED) shapes of 407 X-ray-selected radio-quiet type 1 AGN in the wide-field ``Cosmic Evolution Survey (COSMOS) have been studied for signs of evolution. For a sub-sample of 200 radio-quiet quasars with black hole mass estimates and host galaxy corrections, we studied their mean SEDs as a function of a broad range of redshift, bolometric luminosity, black hole mass and Eddington ratio, and compared them with the Elvis et al. (1994, E94) type 1 AGN mean SED. We found that the mean SEDs in each bin are closely similar to each other, showing no statistical significant evidence of dependence on any of the analyzed parameters. We also measured the SED dispersion as a function of these four parameters, and found no significant dependencies. The dispersion of the XMM-COSMOS SEDs is generally larger than E94 SED dispersion in the ultraviolet, which might be due to the broader ``window function for COSMOS quasars, and their X-ray based selection.
We present optical spectroscopy for an X-ray and optical flux-limited sample of 677 XMM-Newton selected targets covering the 2 deg^2 COSMOS field, with a yield of 485 high-confidence redshifts. The majority of the spectra were obtained over three sea sons (2005-2007) with the IMACS instrument on the Magellan (Baade) telescope. We also include in the sample previously published Sloan Digital Sky Survey spectra and supplemental observations with MMT/Hectospec. We detail the observations and classification analyses. The survey is 90% complete to flux limits of f_{0.5-10 keV}>8 x 10^-16 erg cm^-2 s^-1 and i_AB+<22, where over 90% of targets have high-confidence redshifts. Making simple corrections for incompleteness due to redshift and spectral type allows for a description of the complete population to $i_AB+<23. The corrected sample includes 57% broad emission line (Type 1, unobscured) AGN at 0.13<z<4.26, 25% narrow emission line (Type 2, obscured) AGN at 0.07<z<1.29, and 18% absorption line (host-dominated, obscured) AGN at 0<z<1.22 (excluding the stars that made up 4% of the X-ray targets). We show that the surveys limits in X-ray and optical flux include nearly all X-ray AGN (defined by L_{0.5-10 keV}>3 x 10^42 erg s^-1) to z<1, of both optically obscured and unobscured types. We find statistically significant evidence that the obscured to unobscured AGN ratio at z<1 increases with redshift and decreases with luminosity.
We took advantage of the observations carried out by XMM in the COSMOS field during 3.5 years, to study the long term variability of a large sample of AGN (638 sources), in a wide range of redshift (0.1<z<3.5) and X-ray luminosity ($10^{41}<$L(2-10)$ <10^{45.5}$). Both a simple statistical method to asses the significance of variability, and the Normalized Excess Variance ($sigma^{2}_{rms}$) parameter, where used to obtain a quantitative measurement of the variability. Variability is found to be prevalent in most AGN, whenever we have good statistic to measure it, and no significant differences between type-1 and type-2 AGN were found. A flat (slope -0.23+/-0.03) anti-correlation between $sigma^{2}_{rms}$ and X-ray luminosity is found, when significantly variable sources are considered all together. When divided in three redshift bins, the anti-correlation becomes stronger and evolving with z, with higher redshift AGN being more variable. We prove however that this effect is due to the pre-selection of variable sources: considering all the sources with available $sigma^{2}_{rms}$ measurement, the evolution in redshift disappears. For the first time we were also able to study the long term X-ray variability as a function of $M_{rm BH}$ and Eddington ratio, for a large sample of AGN spanning a wide range of redshift. An anti-correlation between $sigma^{2}_{rms}$ and $M_{rm BH}$ is found, with the same slope of the anti-correlation between $sigma^{2}_{rms}$ and X-ray luminosity, suggesting that the latter can be a byproduct of the former one. No clear correlation is found between $sigma^{2}_{rms}$ and the Eddington ratio in our sample. Finally, no correlation is found between the X-ray $sigma^{2}_{rms}$ and the optical variability.
Heavily obscured, Compton Thick (CT, NH>10^24 cm^-2) AGN may represent an important phase in AGN/galaxy co-evolution and are expected to provide a significant contribution to the cosmic X-ray background (CXB). Through direct X-ray spectra analysis, w e selected 39 heavily obscured AGN (NH>3x10^23 cm^-2) in the 2 deg^2 XMM-COSMOS survey. After selecting CT AGN based on the fit of a simple absorbed two power law model to the XMM data, the presence of CT AGN was confirmed in 80% of the sources using deeper Chandra data and more complex models. The final sample of CT AGN comprises 10 sources spanning a large range of redshift and luminosity. We collected the multi-wavelength information available for all these sources, in order to study the distribution of SMBH and host properties, such as BH mass (M_BH), Eddington ratio (lambda_Edd), stellar mass (M*), specific star formation rate (sSFR) in comparison with a sample of unobscured AGN. We find that highly obscured sources tend to have significantly smaller M_BH and higher lambda_edd with respect to unobscured ones, while a weaker evolution in M* is observed. The sSFR of highly obscured sources is consistent with the one observed in the main sequence of star forming galaxies, at all redshift. We also present optical spectra, spectral energy distribution (SED) and morphology for the sample of 10 CT AGN: all the available optical spectra are dominated by the stellar component of the host galaxy, and a highly obscured torus component is needed in the SED of the CT sources. Exploiting the high resolution Hubble-ACS images available, we conclude that these highly obscured sources have a significantly larger merger fraction with respect to other X-ray selected samples of AGN. Finally we discuss implications in the context of AGN/galaxy co-evolutionary models, and compare our results with the predictions of CXB synthesis models.
121 - Ranieri D. Baldi 2014
We select a sample of radio galaxies at high redshifts (z>~1) in the COSMOS field, by cross-matching optical/infrared images with the FIRST radio data. The aim of this study is to explore the high-z radio-loud (RL) AGN population at much lower lumino sities than the classical samples of distant radio sources and similar to those of the local population of radio galaxies. The wide multiwavelength coverage provided by the COSMOS survey allows us to derive their Spectral Energy Distributions (SEDs). The SED modeling with stellar and dust components (with our code 2SPD) returns several important quantities associated with the AGN and host properties. The final sample consists of 74 RL AGN, which extends the sample previously selected by Chiaberge et al. (2009) and studied by Baldi et al. (2013). The resulting photometric redshifts range from z~0.7 to 3. The sample mostly includes compact radio sources, but also 21 FRIIs; the radio power distribution of the sample at 1.4 GHz covers ~10^(31.5)-10^(34.3) ergsHz. The stellar mass of the hosts ranges ~10^(10)-10^(11.5) M_{sun}. The SEDs are dominated by the contribution from an old stellar population for most of the sources. UV and mid-IR (MIR) excesses are observed for half of the sample. The dust luminosities are in the range L_(dust) ~10^(43)-10^(45.5) erg/s (T ~350-1200 K). UV luminosities at 2000 A ranges ~10^(41.5)-10^(45.5) erg/s. UV emission is significantly correlated with both IR and radio luminosities, the former being the stronger link. However, the origin of UV and dust emission, whether it is produced by the AGN of by star formation, is still unclear. Our results show that this RL AGN population at high redshifts displays a wide variety of properties from possible quasars at the highest luminosities, to low-luminosity old galaxies, similarly to the local FRI-FRII dichotomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا