ﻻ يوجد ملخص باللغة العربية
In recent years, bright soliton-like structures composed of gaseous Bose-Einstein condensates have been generated at ultracold temperature. The experimental capacity to precisely engineer the nonlinearity and potential landscape experienced by these solitary waves offers an attractive platform for fundamental study of solitonic structures. The presence of three spatial dimensions and trapping implies that these are strictly distinct objects to the true soliton solutions. Working within the zero-temperature mean-field description, we explore the solutions and stability of bright solitary waves, as well as their interactions. Emphasis is placed on elucidating their similarities and differences to the true bright soliton. The rich behaviour introduced in the bright solitary waves includes the collapse instability and symmetry-breaking collisions. We review the experimental formation and observation of bright solitary matter waves to date, and compare to theoretical predictions. Finally we discuss the current state-of-the-art of this area, including beyond-mean-field descriptions, exotic bright solitary waves, and proposals to exploit bright solitary waves in interferometry and as surface probes.
We use an effective one-dimensional Gross-Pitaevskii equation to study bright matter-wave solitons held in a tightly confining toroidal trapping potential, in a rotating frame of reference, as they are split and recombined on narrow barrier potential
Motivated by recent experiments, we model the dynamics of bright solitons formed by cold gases in quasi-1D traps. A dynamical variational ansatz captures the far-from equilibrium excitations of these solitons. Due to a separation of scales, the radia
Solitons are non-dispersive wave solutions that arise in a diverse range of nonlinear systems, stablised by a focussing or defocussing nonlinearity. First observed in shallow water, solitons have subsequently been studied in many other fields includi
We report the observation of quantum reflection from a narrow, attractive, potential using bright solitary matter-waves formed from a 85Rb Bose-Einstein condensate. We create narrow potentials using a tightly focused, red-detuned laser beam, and obse
We demonstrate the feasibility of generation of quasi-stable counter-propagating solitonic structures in an atomic Bose-Einstein condensate confined in a realistic toroidal geometry, and identify optimal parameter regimes for their experimental obser