ترغب بنشر مسار تعليمي؟ اضغط هنا

Broad-band timing properties of the accreting white dwarf MV Lyrae

88   0   0.0 ( 0 )
 نشر من قبل Simone Scaringi Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a broad-band timing analysis of the accreting white dwarf system MV Lyrae based on data obtained with the Kepler satellite. The observations span 633 days at a cadence of 58.8 seconds and allow us to probe 4 orders of magnitude in temporal frequency. The modelling of the observed broad-band noise components is based on the superposition of multiple Lorentzian components, similar to the empirical modelling adopted for X-ray binary systems. We also present the detection of a frequency varying Lorentzian component in the lightcurve of MV Lyrae, where the Lorentzian characteristic frequency is inversely correlated with the mean source flux. Because in the literature similar broad-band noise components have been associated to either the viscous or dynamical timescale for different source types (accreting black holes or neutron stars), we here systematically explore both scenarios and place constraints on the accretion disk structure. In the viscous case we employ the fluctuating accretion disk model to infer parameters for the viscosity and disk scale height, and infer uncomfortably high parameters to be accommodated by the standard thin disk, whilst in the dynamical case we infer a large accretion disk truncation radius of ~10 white dwarf radii. More importantly however, the phenomenological properties between the broad-band variability observed here and in X-ray binaries and Active Galactic Nuclei are very similar, potentially suggesting a common origin for the broad-band variability.


قيم البحث

اقرأ أيضاً

65 - S. Scaringi 2017
White dwarfs are often found in binary systems with orbital periods ranging from tens of minutes to hours in which they can accrete gas from their companion stars. In about 15% of these binaries, the magnetic field of the white dwarf is strong enough ($geq 10^6$ Gauss) to channel the accreted matter along field lines onto the magnetic poles. The remaining systems are referred to as non-magnetic, since to date there has been no evidence that they have a dynamically significant magnetic field. Here we report an analysis of archival optical observations of the non-magnetic accreting white dwarf in the binary system MV Lyrae (hereafter MV Lyr), whose lightcurve displayed quasi-periodic bursts of $approx 30$ minutes duration every $approx 2$ hours. The observations indicate the presence of an unstable magnetically-regulated accretion mode, revealing the existence of magnetically gated accretion, where disk material builds up around the magnetospheric boundary (at the co-rotation radius) and then accretes onto the white dwarf, producing bursts powered by the release of gravitational potential energy. We infer a surface magnetic field strength for the white dwarf in MV Lyr between $2 times 10^4 leq B leq 10^5$ Gauss, too low to be detectable by other current methods. Our discovery provides a new way of studying the strength and evolution of magnetic fields in accreting white dwarfs and extends the connections between accretion onto white dwarfs, young stellar objects and neutron stars, for which similar magnetically gated accretion cysles have been identified.
In an XMM-Newton observation of the binary SDSS J121209.31+013627.7, consisting of a white dwarf and an L dwarf, we detect X-ray orbital modulation as proof of accretion from the substellar companion onto the magnetic white dwarf. We constrain the sy stem geometry (inclination as well as magnetic and pole-cap angle) through modelling of the X-ray light curve, and we derive a mass accretion rate of 3.2 10^(-14) M_sun/yr from the X-ray luminosity (~ 3 10^(29) erg/s). From X-ray studies of L dwarfs, a possible wind driven from a hypothesized corona on the substellar donor is orders of magnitude too weak to explain the observed accretion rate, while the radius of the L dwarf is comparable to its Roche lobe (0.1 R_sun), making Roche-lobe overflow the likely accretion mechanism in this system.
We demonstrate a method to fully characterize mass-transferring double white dwarf (DWD) systems with a helium-rich (He) WD donor based on the mass--radius relationship for He WDs. Using a simulated Galactic population of DWDs, we show that donor and accretor masses can be inferred for up to $sim, 60$ systems observed by both Laser Interferometer Space Antenna (LISA) and Gaia. Half of these systems will have mass constraints $Delta,M_{rm{D}}lesssim0.2M_{odot}$ and $Delta,M_{rm{A}}lesssim2.3,M_{odot}$. We also show how the orbital frequency evolution due to astrophysical processes and gravitational radiation can be decoupled from the total orbital frequency evolution for up to $sim 50$ of these systems.
We report on timing observations of the recently discovered binary pulsar PSR J1952+2630 using the Arecibo Observatory. The mildly recycled 20.7-ms pulsar is in a 9.4-hr orbit with a massive, M_WD > 0.93 M_sun, white dwarf (WD) companion. We present, for the first time, a phase-coherent timing solution, with precise spin, astrometric, and Keplerian orbital parameters. This shows that the characteristic age of PSR J1952+2630 is 77 Myr, younger by one order of magnitude than any other recycled pulsar-massive WD system. We derive an upper limit on the true age of the system of 50 Myr. We investigate the formation of PSR J1952+2630 using detailed modelling of the mass-transfer process from a naked helium star on to the neutron star following a common-envelope phase (Case BB Roche-lobe overflow). From our modelling of the progenitor system, we constrain the accretion efficiency of the neutron star, which suggests a value between 100 and 300% of the Eddington accretion limit. We present numerical models of the chemical structure of a possible oxygen-neon-magnesium WD companion. Furthermore, we calculate the past and the future spin evolution of PSR J1952+2630, until the system merges in about 3.4 Gyr due to gravitational wave emission. Although we detect no relativistic effects in our timing analysis we show that several such effects will become measurable with continued observations over the next 10 years; thus PSR J1952+2630 has potential as a testbed for gravitational theories.
The double-degenerate model, involving the merger of double carbon-oxygen white dwarfs (CO WDs), is one of the two classic models for the progenitors of type Ia supernovae (SNe Ia). Previous studies suggested that off-centre carbon burning would occu r if the mass-accretion rate (Macc) is relatively high during the merging process, leading to the formation of oxygen-neon (ONe) cores that may collapse into neutron stars. However, the off-centre carbon burning is still incompletely understood, especially when the inwardly propagating burning wave reaches the centre. In this paper, we aim to investigate the propagating characteristics of burning waves and the subsequently evolutionary outcomes of these CO cores. We simulated the long-term evolution of CO WDs that accrete CO-rich material by employing the stellar evolution code MESA on the basis of the thick-disc assumption. We found that the final outcomes of CO WDs strongly depend on Macc (Msun/yr) based on the thick-disc assumption, which can be divided into four regions: (1) explosive carbon ignition in the centre, then SNe Ia (Macc < 2.45*10^-6); (2) OSi cores, then neutron stars (2.45*10^-6 < Macc < 4.5*10^-6); (3) ONe cores, then e-capture SNe (4.5*10^-6 < Macc < 1.05*10^-5); (4) off-centre oxygen and neon ignition, then off-centre explosion or Si-Fe cores (Macc > 1.05*10^-5). Our results indicate that the final fates of double CO WD mergers are strongly dependent on the merging processes (e.g. slow merger, fast merger, composite merger, violent merger, etc.).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا