ترغب بنشر مسار تعليمي؟ اضغط هنا

A quasi-analytical modal approach for computing Casimir interactions in periodic nanostructures

195   0   0.0 ( 0 )
 نشر من قبل Francesco Intravaia
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an almost fully analytical technique for computing Casimir interactions between periodic lamellar gratings based on a modal approach. Our method improves on previous work on Casimir modal approaches for nanostructures by using the exact form of the eigenvectors of such structures, and computing eigenvalues by solving numerically a simple transcendental equation. In some cases eigenvalues can be solved for exactly, such as the zero frequency limit of gratings modeled by a Drude permittivity. Our technique also allows us to predict analytically the behavior of the Casimir interaction in limiting cases, such as the large separation asymptotics. The method can be generalized to more complex grating structures, and may provide a deeper understanding of the geometry-composition-temperature interplay in Casimir forces between nanostructures.

قيم البحث

اقرأ أيضاً

We present a modal approach to calculate finite temperature Casimir interactions between two periodically modulated surfaces. The scattering formula is used and the reflection matrices of the patterned surfaces are calculated decomposing the electrom agnetic field into the natural modes of the structures. The Casimir force gradient from a deeply etched silicon grating is evaluated using the modal approach and compared to experiment for validation. The Casimir force from a two dimensional periodic structure is computed and deviations from the proximity force approximation examined.
96 - L. Tang , M. Wang , C. Y. Ng 2017
Casimir forces are of fundamental interest because they originate from quantum fluctuations of the electromagnetic field. Apart from controlling the Casimir force via the optical properties of the materials, a number of novel geometries have been pro posed to generate repulsive and/or non-monotonic Casimir forces between bodies separated by vacuum gaps. Experimental realization of these geometries, however, is hindered by the difficulties in alignment when the bodies are brought into close proximity. Here, using an on-chip platform with integrated force sensors and actuators, we circumvent the alignment problem and measure the Casimir force between two surfaces with nanoscale protrusions. We demonstrate that the Casimir force depends non-monotonically on the displacement. At some displacements, the Casimir force leads to an effective stiffening of the nanomechanical spring. Our findings pave the way for exploiting the Casimir force in nanomechanical systems using structures of complex and non-conventional shapes.
We suggest an architecture for quantum computing with spin-pair encoded qubits in silicon. Electron-nuclear spin-pairs are controlled by a dc magnetic field and electrode-switched on and off hyperfine interaction. This digital processing is insensiti ve to tuning errors and easy to model. Electron shuttling between donors enables multi-qubit logic. These hydrogenic spin qubits are transferable to nuclear spin-pairs, which have long coherence times, and electron spin-pairs, which are ideally suited for measurement and initialization. The architecture is scalable to highly parallel operation.
In this article, we show how to map a sampling of the hardest artificial intelligence problems in space exploration onto equivalent Ising models that then can be attacked using quantum annealing implemented in D-Wave machine. We overview the existing results as well as propose new Ising model implementations for quantum annealing. We review supervised and unsupervised learning algorithms for classification and clustering with applications to feature identification and anomaly detection. We introduce algorithms for data fusion and image matching for remote sensing applications. We overview planning problems for space exploration mission applications and algorithms for diagnostics and recovery with applications to deep space missions. We describe combinatorial optimization algorithms for task assignment in the context of autonomous unmanned exploration. Finally, we discuss the ways to circumvent the limitation of the Ising mapping using a blackbox approach based on ideas from probabilistic computing. In this article we describe the architecture of the D-Wave One machine and report its benchmarks. Results on random ensemble of problems in the range of up to 96 qubits show improved scaling for median core quantum annealing time compared with classical algorithms; whether this scaling persists for larger problem sizes is an open question. We also review previous results of D-Wave One benchmarking studies for solving binary classification problems with a quantum boosting algorithm which is shown to outperform AdaBoost. We review quantum algorithms for structured learning for multi-label classification and introduce a hybrid classical/quantum approach for learning the weights. Results of D-Wave One benchmarking studies for learning structured labels on four different data sets show a better performance compared with an independent Support Vector Machine approach with linear kernel.
103 - L. G. Helt , N. Quesada 2019
We consider pulsed-pump spontaneous parametric downconversion (SPDC) as well as pulsed single- and dual-pump spontaneous four-wave mixing processes in waveguides within a unified Hamiltonian theoretical framework. Working with linear operator equatio ns in $k$-space, our approach allows inclusion of linear losses, self- and cross-phase modulation, and dispersion to any order. We describe state evolution in terms of second-order moments, for which we develop explicit expressions. We use our approach to calculate the joint spectral amplitude of degenerate squeezing using SPDC analytically in the perturbative limit, benchmark our theory against well-known results in the limit of negligible group velocity dispersion, and study the suitability of recently proposed sources for quantum sampling experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا