ﻻ يوجد ملخص باللغة العربية
We discuss the desired criteria for a two-qubit phase gate and present a method for realising such a gate for quantum computation that is measurement-free and low error. The gate is implemented between qubits via an intermediate bus mode. We take a coherent state as the bus and use cross-Kerr type interactions between the bus and the qubits. This new method is robust against parameter variations and is thus low error. It fundamentally improves on previous methods due its deterministic nature and the lack of approximations used in the geometry of the phase rotations. This interaction is applicable both to solid state and photonic qubit systems.
Quantum error correction is a crucial step beyond the current noisy-intermediate-scale quantum device towards fault-tolerant quantum computing. However, most of the error corrections ever demonstrated rely on post-selection of events or post-correcti
To realize fault-tolerant quantum computing, it is necessary to store quantum information in logical qubits with error correction functions, realized by distributing a logical state among multiple physical qubits or by encoding it in the Hilbert spac
The Eastin-Knill theorem states that no quantum error correcting code can have a universal set of transversal gates. For self-dual CSS codes that can implement Clifford gates transversally it suffices to provide one additional non-Clifford gate, such
We study both the wave-like behavior and particle-like behavior in a general Mach-Zehnder interferometer with its asymmetric beam splitter. A error-free measurement in the detector is used to extract the which-path information. The fringe visibility
A new model of quantum computation is considered, in which the connections between gates are programmed by the state of a quantum register. This new model of computation is shown to be more powerful than the usual quantum computation, e. g. in achiev